Abstract
Bisection is a search algorithm for numerical CSPs. The main principle is to select one variable at every node of the search tree and to bisect its interval domain. In this paper, we introduce a new adaptive variable selection strategy following an intensification diversification approach. Intensification is implemented by the maximum smear heuristic. Diversification is obtained by a round-robin ordering on the variables. The balance is automatically adapted during the search according to the solving state. Experimental results from a set of standard benchmarks show that this new strategy is more robust. Moreover, it is particularly efficient for solving the well-known Transistor problem, illustrating the benefits of an adaptive search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) Revisited. In: Proc. ILPS, pp. 124–138 (1994)
Csendes, T., Ratz, D.: Subdivision Direction Selection in Interval Methods for Global Optimization. SIAM J. Numerical Analysis 34, 922–938 (1997)
Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6, 109–133 (1995)
Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an Interval Solver using Constraint Satisfaction Techniques. ACM Trans. Mathematical Software 32(1), 138–156 (2006)
Hamadi, Y., Monfroy, E., Saubion, F. (eds.): Autonomous Search. Springer (2012)
Van Hentenryck, P., Mcallester, D., Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach. SIAM J. Numerical Analysis 34, 797–827 (1997)
Kearfott, R.B.: Some Tests of Generalized Bisection. ACM Trans. Mathematical Software 13(3), 197–220 (1987)
Kearfott, R.B., Novoa, M.: Algorithm 681: INTBIS, a portable interval Newton/bisection package. ACM Trans. Mathematical Software 16(2), 152–157 (1990)
Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Proc. IJCAI, pp. 232–238 (1993)
Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)
Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Linearizations for Global Optimization. In: Proc. AAAI, pp. 99–104 (2011)
Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Granvilliers, L. (2012). Adaptive Bisection of Numerical CSPs. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)