The Weighted Average Constraint | SpringerLink
Skip to main content

The Weighted Average Constraint

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Weighted average expressions frequently appear in the context of allocation problems with balancing based constraints. In combinatorial optimization they are typically avoided by exploiting problems specificities or by operating on the search process. This approach fails to apply when the weights are decision variables and when the average value is part of a more complex expression. In this paper, we introduce a novel average constraint to provide a convenient model and efficient propagation for weighted average expressions appearing in a combinatorial model. This result is especially useful for Empirical Models extracted via Machine Learning (see [2]), which frequently count average expressions among their inputs. We provide basic and incremental filtering algorithms. The approach is tested on classical benchmarks from the OR literature and on a workload dispatching problem featuring an Empirical Model. In our experimentation the novel constraint, in particular with incremental filtering, proved to be even more efficient than traditional techniques to tackle weighted average expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and Controlled Systems: A Case Study on Thermal Aware Workload Dispatching. Accepted for Publication at AAAI 2012 (2012)

    Google Scholar 

  2. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron Constraints to Model Complex Real-World Problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Beasley, J.E.: OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  4. Harvey, W., Schimpf, J.: Bounds consistency techniques for long linear constraints. In: Proc. of the TRICS Workshop, at CP (2002)

    Google Scholar 

  5. Howard, J., Dighe, S., et al.: A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS. In: Proc. of ISSCC, pp. 108–109 (February 2010)

    Google Scholar 

  6. Perron, L.: Operations Research and Constraint Programming at Google. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, p. 2. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Pesant, G., Régin, J.-C.: SPREAD: A Balancing Constraint Based on Statistics. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Régin, J.C.: Global Constraints: a survey. In: Hybrid Optimization, pp. 63–134. Springer, New York (2011)

    Chapter  Google Scholar 

  9. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: Simplification and extension of the spread constraint. In: Third Workshop on Constraint Propagation and Implementation, in CP 2006, pp. 72–92 (2006)

    Google Scholar 

  10. Schaus, P., Deville, Y., Dupont, P., Régin, J.-C.: The Deviation Constraint. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 260–274. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Schaus, P., Deville, Y., Dupont, P.: Bound-Consistent Deviation Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 620–634. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Sridharan, R.: The capacitated plant location problem. European Journal of Operational Research 87(2), 203–213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonfietti, A., Lombardi, M. (2012). The Weighted Average Constraint. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics