Zero-Knowledge for Multivariate Polynomials | SpringerLink
Skip to main content

Zero-Knowledge for Multivariate Polynomials

  • Conference paper
Progress in Cryptology – LATINCRYPT 2012 (LATINCRYPT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7533))

Abstract

In [15] a protocol ZK(2) using zero-knowledge argument of knowledge was designed from a solution of a set of multivariate quadratic equations over a finite field (i.e. from MQ problem). In this paper, we propose a new scheme ZK(d) which is a generalization of ZK(2), i.e. we consider systems of polynomials of degree d. The key idea of the scheme ZK(d) is to use a polarization identity that allows to get a d-linear function and then use a cut-and-choose technique. We also observe that the scheme \(\tilde{ZK}(d)\), which is the natural generalization of the protocol based on the MQ problem to higher degree, is more efficient in terms of computations whereas the ZK(d) scheme is better in terms of bits to be sent. Moreover these properties are still true for all kinds of polynomials: for example if the polynomials are sparse or dense. Finally, we will present two examples of applications: with Brent equations, or with morphisms of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bard, G.V.: New Practical Strassen-like Approximate Matrix-multiplication Algorithms found via solving a system of cubic equations, http://www.users.math.umd.edu/~bardg/

  2. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 109–128. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Courtois, N., Bard, G.V., Hulme, D.: A new general-purpose method to multiply 3x3 matrices using only 23 multiplications. CoRR, abs/1108.2830 (2011)

    Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completness. W.H. Freeman and Co. (1979)

    Google Scholar 

  5. Goldreich, O.: Foundations of Cryptography: Volume I. Basic Tools. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in np have zero-knowledge proof systems. J. ACM 38, 690–728 (1991)

    Article  MathSciNet  Google Scholar 

  7. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201–215. Springer, Heidelberg (1996)

    Google Scholar 

  8. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1492, pp. 206–222. Springer, Heidelberg (1998)

    Google Scholar 

  9. Laderman, J.: A noncomuutative algorithm for multiplying 3 x3 matrices using 23 multiplication. Bulletin of the American Mathematical Society 82, 126–128 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Google Scholar 

  11. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  12. Patarin, J., Goubin, L.: Trapdoor One-Way Permutations and Multivariate Polynomials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Pointcheval, D.: A New Identification Scheme Based on the Perceptrons Problem. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 319–328. Springer, Heidelberg (1995)

    Google Scholar 

  14. Sakumoto, K.: Public-Key Identification Schemes Based on Multivariate Cubic Polynomials. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 172–189. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-Key Identification Schemes Based on Multivariate Quadratic Polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011)

    Google Scholar 

  16. Shamir, A.: An Efficient Identification Scheme Based on Permuted Kernels (Extended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg (1990)

    Google Scholar 

  17. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Google Scholar 

  18. Stern, J.: Designing Identification Schemes with Keys of Short Size. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg (1994)

    Google Scholar 

  19. Strassen, V.: Gaussion Elimination is not optimal. Numerische Mathematik 13(3), 354–356 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomas, E.G.F.: A Polarizatin Identity for Multilinear Maps. University of Groningen - Preprint (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nachef, V., Patarin, J., Volte, E. (2012). Zero-Knowledge for Multivariate Polynomials. In: Hevia, A., Neven, G. (eds) Progress in Cryptology – LATINCRYPT 2012. LATINCRYPT 2012. Lecture Notes in Computer Science, vol 7533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33481-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33481-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33480-1

  • Online ISBN: 978-3-642-33481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics