Cellular Automata Model Properties: Representation of Saturation Flow | SpringerLink
Skip to main content

Cellular Automata Model Properties: Representation of Saturation Flow

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

  • 2811 Accesses

Abstract

The current study investigates the way in which the saturation flow of a traffic lane is representedthrough widely used cellular automata models. In particular, following a literature search specific cellular automata models that have been developed to simulate mainly urban traffic are selected for this study. The values of the saturation flow as these are produced via model simulations with the modification of relevant model parameters including maximum desired speed and probability are defined through appropriate statistical values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)

    Article  Google Scholar 

  2. Spyropoulou, I.: Modelling a signal controlled traffic stream using cellular automata. Transp. Res. C 15(3), 175–190 (2007)

    Article  Google Scholar 

  3. Barlovic, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Metastable states in cellular automata. Eur. Phys. J. B 5(3), 793–800 (1998)

    Article  Google Scholar 

  4. Brilon, W., Wu, N.: Evaluation of Cellular automaton for Traffic Flow Simulation on Freeway and Urban Streets. In: Brilon, W., Huber, F., Schreckenberg, M., Wallentowitz, H. (eds.) Traffic and Mobility, pp. 163–180. Springer, Berlin (1999)

    Chapter  Google Scholar 

  5. Chopard, B., Luthi, P.O., Queloz, P.A.: Cellular automat model of car traffic in two-dimensional street networks. J. Phys. A 29, 2325–2336 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Esser, J., Schreckenberg, M.: Microscopic simulation of urban traffic based cellular automata. Int. J. Modern Phys. C 8(5), 1025–1036 (1997)

    Article  Google Scholar 

  7. Chowdhury, D., Schadschneider, A.: Self-organization fo traffic jams in cities: Effects of stochastic dynamics and signal periods. Phys. Rev. E 59(2), 1311–1314 (1999)

    Article  Google Scholar 

  8. Ruskin, H.J., Wang, R.: Modelling Traffic Flow at an Urban Unsignalised Intersection. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, Part I. LNCS, vol. 2329, pp. 381–390. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Wu, Q.-S., Li, X.-B., Hu, M.-B., Jiang, R.: Study of traffic flow at an unsignalized T-shaped intersection by cellular automata model. Eur. Phys. J. B 48, 265–269 (2005)

    Article  Google Scholar 

  10. Jiang, R., Wu, Q.-S.: A stopped time dependent randomization cellular automata model for traffic flow controlled by traffic light. Phys. A 364, 493–496 (2006)

    Article  Google Scholar 

  11. Płaczek, B.: Fuzzy Cellular Model for On-Line Traffic Simulation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part II. LNCS, vol. 6068, pp. 553–560. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. He, H.D., Lu, W.Z., Dong, L.Y.: An improved cellular automaton model considering the effect of traffic lights and driving behaviour. Chin. Phys. B 20(4), 040514-1–040514-7 (2011)

    Article  Google Scholar 

  13. Kimber, R.M., McDonald, M., Hounsell, N.: Passenger car units in saturation flows: concept, definition, derivation. Transportation Research 19B(1), 39–61 (1985)

    Google Scholar 

  14. Transportation Research Board: Highway Capacity Manual. Special Report 209. National Research Council, Washington D.C. (2000)

    Google Scholar 

  15. Akcelik, R.: Traffic signals: Capacity and timing analysis. Australian Road Research Board Research Report, APR 123. Australian Road Research Board, Hawthorne (1981)

    Google Scholar 

  16. Road Research Laboratory: A method of measuring saturation flow at traffic signals. Road Note 34, Department of the Environment. Road Reasearch Laboratory, Harmondsworth (1963)

    Google Scholar 

  17. Greenshields, B.D., Shapiro, D., Erickson, E.L.: Traffic performance at urban intersections. Bureau of Highway Traffic, Technical Report, 1. Yale University, New Haven, Conn (1947)

    Google Scholar 

  18. Branston, D., Van Zuylen, H.: The estimation of saturation flow, effective green time and passenger car equivalents at traffic signals by multiple linear regression. Transportation Research 12(1), 47–53 (1978)

    Article  Google Scholar 

  19. Spyropoulou, I.: Modelling a signal controlled traffic stream using cellular automata. Transportation Research Part C 15(3), 175–190 (2007)

    Article  Google Scholar 

  20. Fellendorf, M., Vortisch, P.: Validation of the Microscopic Traffic Flow Model VISSIM in Different Real-World Situations. In: Proceedings of the 80th Annual Meeting of the Transportation Research Board, TRB, Washington D.C. (2001)

    Google Scholar 

  21. Laufer, J.: Freeway capacity, saturation flow and the car following behavioural algorithm of the VISSIM microsimulation software. In: 30th Australasian Transport Research Forum, Melbourne, Australia (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spyropoulou, I. (2012). Cellular Automata Model Properties: Representation of Saturation Flow. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics