A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition | SpringerLink
Skip to main content

A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

This paper presents a recurrent neural networks applied to handwriting character recognition. The method Multi-dimensional Recurrent Neural Network is evaluated against classical techniques. To improve the model performance we propose the use of specialized Support Vector Machine combined whit the original Multi-dimensional Recurrent Neural Network in cases of confusion letters. The experiments were performed in the C-Cube database and compared with different classifiers. The hierarchical combination presented promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. El Abed, H., Margner, V., Kherallah, M., Alimi, A.M.: ICDAR 2009 Handwriting Recognition Competition. In: Int. Conf. Document Analysis and Recognition, pp. 1388–1392 (2009)

    Google Scholar 

  2. Bellili, A., Gilloux, M., Gallinari, P.: An Hybrid MLP-SVM Handwritten Digit Recognizer. In: Int. Conf. on Document Analysis and Recognition, pp. 28–32 (2001)

    Google Scholar 

  3. Bunke, H.: Recognition of cursive roman handwriting - past present and future. In: Proc. 7th Int. Conf. on Document Analysis and Recognition, vol. 1, pp. 448–459 (2003)

    Google Scholar 

  4. Camastra, F.: A SVM-Based Cursive Character Recognizer. Pattern Recognition 40(12), 3721–3727 (2007)

    Article  MATH  Google Scholar 

  5. Cruz, R.M.O., Cavalcanti, G.D.C., Tsang, I.R.: An Ensemble Classifier for Offline Cursive Character Recognition using Multiple Feature Extraction Techniques. In: IEEE Int. Joint Conf. on Neural Networks, pp. 744–751 (2010)

    Google Scholar 

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons (2001)

    Google Scholar 

  7. Graves, A., Fernández, S., Schmidhuber, J.: Multidimensional Recurrent Neural Networks. In: Proc. of Int. Con. on Artificial Neural Networks, pp. 549–558 (2007)

    Google Scholar 

  8. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Dissertation, Technische Universität München, München (2008)

    Google Scholar 

  9. Graves, A., Schmidhuber, J.: Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. In: Adv. in Neural Information Proc. Syst., pp. 545–552 (2009)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Neves, R.F.P., Lopes, A.N.G., Mello, C.A.B., Zanchettin, C.: A SVM Based Off-line Handwritten Digit Recognizer. In: IEEE Int. Conf. on Sys., Man, and Cyb., pp. 510–515 (2011)

    Google Scholar 

  12. Plamondon, R., Srihari, S.N.: On-line and Off-line Handwriting Recognition: A Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)

    Article  Google Scholar 

  13. Rodrigues, R.J., Kupac, G.V., Thomé, A.C.G.: Character Feature Extraction using Polygonal Projection Sweep (Contour Detection). In: Proc. Int. Work. Conf. on Artificial Neural Networks, pp. 687–695 (2001)

    Google Scholar 

  14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Pearson Education Inc. (2003)

    Google Scholar 

  15. Tappert, C., Suen, C., Wakahara, T.: The State of the Art in Online Handwriting Recognition. IEEE Trans. on Patt. Analysis and Machine Intelligence 12(8), 787–808 (1990)

    Article  Google Scholar 

  16. Thornton, J., Faichney, J., Blumenstein, M., Hine, T.: Character Recognition using Hierarchical Vector Quantization and Temporal Pooling. In: Proc. Australasian Joint Con. on Artificial Intelligence, pp. 562–572 (2008)

    Google Scholar 

  17. Thornton, T., Blumenstein, M., Nguyen, V., Hine, T.: Offline Cursive Character Recognition: A State-of-the-art Comparison. In: Conf. Int. Graphonomics Society (2009)

    Google Scholar 

  18. Trier, O.D., Jains, A.K., Taxt, T.: Feature Extraction Methods for Character Recognition - A Survey. Pattern Recognition 29(4), 641–662 (1996)

    Article  Google Scholar 

  19. Vamvakas, G., Gatos, B., Perantonis, S.J.: Handwritten Character Recognition Through Two-stage Foreground Sub-sampling. Pattern Recognition (43), 2807–2816 (2010)

    Google Scholar 

  20. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  21. Vinciarelli, A.: A Survey on Off-line Cursive Script Recognition. Pattern Recognition 35(7), 1433–1446 (2002)

    Article  MATH  Google Scholar 

  22. Washington, W.A., Zanchettin, C.: A MLP-SVM Hybrid Model for Cursive Handwriting Recognition. In: Proc. of Int. Joint Conf. on Neural Networks, pp. 843–850 (2011)

    Google Scholar 

  23. Zanchettin, C., Bezerra, B.L.D., Azevedo, W.W.: A KNN-SVM Hybrid Model for Cursive Handwriting Recognition. In: IEEE Int. Joint Con. on Neural Networks, Birsbane (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezerra, B.L.D., Zanchettin, C., de Andrade, V.B. (2012). A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics