An Efficient Way of Combining SVMs for Handwritten Digit Recognition | SpringerLink
Skip to main content

An Efficient Way of Combining SVMs for Handwritten Digit Recognition

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

This paper presents a method of combining SVMs (support vector machines) for multiclass problems that ensures a high recognition rate and a short processing time when compared to other classifiers. This hierarchical SVM combination considers the high recognition rate and short processing time as evaluation criteria. The used case study was the handwritten digit recognition problem with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Pearson Education Inc. (2003)

    Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley–Intersciance (2001)

    Google Scholar 

  3. Plötz, T., Fink, G.A.: Markov models for offline handwritting recognition: a survey. International Journal on Document Analysis and Recognition 12(4), 269–298 (2009)

    Article  Google Scholar 

  4. NIST Special Database 19. Handprinted Forms and Characters Database, http://www.nist.gov/srd/nistsd19.cfm

  5. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall (1999)

    Google Scholar 

  6. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  7. Zanchettin, C., Bezerra, B.L.D., Azevedo, W.W.: A KNN-SVM Hybrid Model for Cursive Handwriting Recognition. In: IEEE Int. Joint Con. on Neural Networks, Birsbane (2012)

    Google Scholar 

  8. Neves, R.F.P., Lopes-Filho, A.N.G., Mello, C.A.B., Zanchettin, C.: A SVM Based Off-Line Handwritten Digit Recognizer. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 510–515 (October 2011)

    Google Scholar 

  9. Bellili, A., Gilloux, M., Gallinari, P.: An MLP-SVM combination architecture for offline handwritten digit recognition. Reduction of recognition errors by Support Vector Machines rejection mechanisms. International Journal on Document Analysis and Recognition 5, 244–252 (2004)

    Google Scholar 

  10. Bhowmik, T.K., Ghanty, P., Roy, A., Parui, S.K.: SVM-based hierarchal architectures for handwritten Bangla character recognition. International Journal on Document Analysis and Recognition 12, 97–108 (2009)

    Article  Google Scholar 

  11. Parsiavash, H., Mehran, R., Razzazi, F.: A robust free size OCR for omni-font Persian/Arabic document using combined MLP/SVM. In: Proceedings of Iberoamerican Congress on Pattern Recognition, pp. 601–610 (2005)

    Google Scholar 

  12. Camastra, F.: A SVM-based cursive character recognizer. Pattern Recognition 40, 3721–3727 (2007)

    Article  MATH  Google Scholar 

  13. Hsu, C.W., Lin, C.J.: A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  14. Parker, J.R.: Algorithms for Image Processing and Computer Vision. John Wiley and Sons (1997)

    Google Scholar 

  15. Gonzalez, R., Woods, C., Richard, E.: Digital Image Processing. Addison-Wesley (1992)

    Google Scholar 

  16. Mathworks MatlabTM – The language of technical computing, http://www.mathworks.com/products/matlab/

  17. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Computation 22, 3207–3220 (2010)

    Article  Google Scholar 

  18. Camastra, F.: A SVM-based cursive character recognizer. Pattern Recognition 40, 3721–3727 (2007)

    Article  MATH  Google Scholar 

  19. Zhang, P., Bui, T.D., Suen, C.Y.: A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognition 40, 3415–3429 (2007)

    Article  MATH  Google Scholar 

  20. Vamvakas, G., Gatos, B., Perantonis, S.J.: Handwritten character recognition through two-stage foreground sub-sampling. Pattern Recognition (43), 2807–2816 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neves, R.F.P., Zanchettin, C., Filho, A.N.G.L. (2012). An Efficient Way of Combining SVMs for Handwritten Digit Recognition. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics