Abstract
Over the past couple of decades, virtual humans have been attracting more and more attention. Many applications including, video games, movies, and various training and tutoring systems have benefited from work in this area. While the visual quality of virtual agents has improved dramatically, their intelligence and socialization still needs improvement. In this paper, we present work towards endowing agents with social roles and exploiting Explanation-Based Learning (EBL) to enable them to acquire additional, contextual behaviors from other agents. These virtual humans are capable of learning and applying role related actions from multiple agents and only adopt behaviors that have been explained to them, meaning that their definition of a role may be a subset from one or more agents. This results in emergent behaviors in heterogeneous populations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Webster’s College Dictionary. Random House (1991)
Biddle, B.J.: Role Theory: Concepts and Research. Krieger Pub. Co. (1979)
Blumberg, B., Downie, M., Ivanov, Y., Berlin, M., Johnson, M.P., Tomlinson, B.: Integrated learning for interactive synthetic characters. In: Proceedings of the 2002 ACM SIGGRAPH Conference, pp. 417–426. ACM (2002)
Carey, S., Spelke, E.: Domain-specfic knowledge and conceptual change. In: Hirschfeld, L.A., Gelman, S.A. (eds.) Mapping the Mind. Cambridge University Press (1994)
Chang, P., Chien, Y.-H., Kao, E., Soo, V.-W.: A Knowledge-Based Scenario Framework to Support Intelligent Planning Characters. In: Panayiotopoulos, T., Gratch, J., Aylett, R., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 134–145. Springer, Heidelberg (2005)
Cohen, P.R., Atkin, M.S., Oates, T., Beal, C.R.: Neo: learning conceptual knowledge by sensorimotor interaction with an environment. In: Proceedings of the First International Conference on Autonomous Agents, AGENTS 1997, pp. 170–177 (1997)
Conde, T., Thalmann, D.: Learnable behavioural model for autonomous virtual agents: low-level learning. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 89–96 (2006)
Costa, P., Botelho, L.: Learning by observation in software agents. In: Proceedings of the 4th International Conference on Agents and Artificial Intelligence, ICAART (2012)
Dejong, G., Mooney, R.: Explanation-based learning: An alternative view. Machine Learning 1, 145–176 (1986)
Ellenson, A.: Human Relations, 2nd edn. Prentice Hall College Div. (1982)
Farenc, N., Boulic, R., Thalmann, D.: An informed environment dedicated to the simulation of virtual humans in urban context. Computer Graphics Forum 18(3), 309–318 (1999)
Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. In: Proceedings of the 1999 ACM SIGGRAPH Conference, SIGGRAPH 1999, pp. 29–38 (1999)
Goertzel, B., Pitt, J., Wigmore, J., Geisweiller, N., Cai, Z., Lian, R., Huang, D., Yu, G.: Cognitive synergy between procedural and declarative learning in the control of animated and robotic agents using the opencogprime agi architecture. In: Proceedings of the 25th AAAI National Conference on Artificial Intelligence, AAAI 2011. AAAI Press (2011)
Grimaldo, F., Lozano, M., Barber, F., Vigueras, G.: Simulating socially intelligent agents in semantic virtual environments. Knowl. Eng. Rev. 23(4), 369–388 (2008)
Ji, Y., Massanari, R.M., Ager, J., Yen, J., Miller, R.E., Ying, H.: A fuzzy logic-based computational recognition-primed decision model. Inf. Sci. 177(20), 4338–4353 (2007)
Johnson, W.L., Rickel, J.W., Lester, J.C.: Animated pedagogical agents: Face-to-face interaction in interactive learning environments. International Journal of Artificial Intelligence in Education 11, 47–78 (2000)
Kao, E., Chang, P., Chien, Y.-H., Soo, V.-W.: Using Ontology to Establish Social Context and Support Social Reasoning. In: Panayiotopoulos, T., Gratch, J., Aylett, R., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 344–357. Springer, Heidelberg (2005)
Li, W., Allbeck, J.M.: Populations with Purpose. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 132–143. Springer, Heidelberg (2011)
Luo, L., Zhou, S., Cai, W., Low, M.Y.H., Tian, F., Wang, Y., Xiao, X., Chen, D.: Agent-based human behavior modeling for crowd simulation. Computer Animation and Virtual Worlds 19(3-4), 271–281 (2008)
McGinnies, E.: Perspectives on Social Behavior. Gardner Press, Inc. (1994)
Mitchell, T.M., Keller, R.M., Kedar-Cabelli, S.T.: Explanation-based generalization: A unifying view. Machine Learning 1, 47–80 (1986)
Orkin, J., Roy, D.: Automatic learning and generation of social behavior from collective human gameplay. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, pp. 385–392 (2009)
Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach to crowd simulation. IEEE Comput. Graph. Appl. 29(4), 34–43 (2009)
Pelechano, N., O’Brien, K., Silverman, B., Badler, N.I.: Crowd simulation incorporating agent psychological models, roles and communication. In: First International Workshop on Crowd Simulation, pp. 21–30 (2005)
Pinker, S.: The Language Instinct. HarperCollins (1995)
Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture (1991)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall (2009)
Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 19–28 (2005)
Sklar, E., Richards, D.: The use of agents in human learning systems. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 767–774 (2006)
Stark, R.: Sociology. Thomson Wadsworth Publishing (2006)
Tom, M.: Machine Learning. McGraw-Hill (1997)
Wang, Z., Lee, J., Marsella, S.: Towards More Comprehensive Listening Behavior: Beyond the Bobble Head. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 216–227. Springer, Heidelberg (2011)
Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pp. 119–128 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, W., Allbeck, J.M. (2012). The Virtual Apprentice. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds) Intelligent Virtual Agents. IVA 2012. Lecture Notes in Computer Science(), vol 7502. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33197-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-33197-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33196-1
Online ISBN: 978-3-642-33197-8
eBook Packages: Computer ScienceComputer Science (R0)