Abstract
The movement of the vehicle is an useful information for different applications, such as driver assistant systems or autonomous vehicles. This information can be known by different methods, for instance, by using a GPS or by means of the visual odometry. However, there are some situations where both methods do not work correctly. For example, there are areas in urban environments where the signal of the GPS is not available, as tunnels or streets with high buildings. On the other hand, the algorithms of computer vision are affected by outdoor environments, and the main source of difficulties is the variation in the ligthing conditions. A method to estimate and predict the movement of the vehicle based on visual odometry and Kalman filter is explained in this paper. The Kalman filter allows both filtering and prediction of vehicle motion, using the results from the visual odometry estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borenstein, J., Everett, H., Feng, L.: Where am i? sensors and methods for mobile robot positioning. University of Michigan 119, 120 (1996)
Demirdjian, D., Darrell, T.: Motion estimation from disparity images. In: Proceedings of Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 213–218. IEEE (2001)
Hernández, A., Nieto, J., Vidal Calleja, T., Nebot, E., et al.: Large scale visual odometry using stereo vision (2011)
Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3946–3952. IEEE (2008)
NovAtel Inc., Calgary (2012), http://www.novatel.com
Hu, Z., Lamosa, F., Uchimura, K.: A complete uv-disparity study for stereovision based 3d driving environment analysis. In: Fifth International Conference on 3-D Digital Imaging and Modeling, 3DIM 2005, pp. 204–211. IEEE (2005)
Kalman, R.: A new approach to linear filtering and prediction problems. Journal of basic Engineering 82(Series D), 35–45 (1960)
Labayrade, R., Aubert, D., Tarel, J.: Real time obstacle detection in stereovision on non flat road geometry through v-disparity representation. In: Intelligent Vehicle Symposium, vol. 2, pp. 646–651. IEEE (2002)
Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Musleh, B., Escalera, A., Armingol, J.: Real-time pedestrian recognition in urban environments. In: Advanced Microsystems for Automotive Applications, pp. 139–147 (2011)
Musleh, B., de la Escalera, A., Armingol, J.: U-v disparity analysis in urban environments. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part II. LNCS, vol. 6928, pp. 426–432. Springer, Heidelberg (2012)
Nistér, D., Naroditsky, O., Bergen, J.: Computer Vision and Pattern Recognition. In: Proceedings of the 2004 IEEE Computer Society Conference on CVPR 2004 , vol. 1, p–652. IEEE (2004)
Nourani-Vatani, N., Roberts, J., Srinivasan, M.: Practical visual odometry for car-like vehicles. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3551–3557. IEEE (2009)
Parra, I., Sotelo, M., Llorca, D., Ocana, M.: Robust visual odometry for vehicle localization in urban environments. Robotica 28(3), 441–452 (2010)
Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 4293–4299. IEEE (2009)
Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics 24(5), 1015–1026 (2008)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1), 7–42 (2002)
Stein, G., Mano, O., Shashua, A.: A robust method for computing vehicle ego-motion. In: Proceedings of the IEEE Intelligent Vehicles Symposium, IV 2000, pp. 362–368. IEEE (2000)
Vedaldi, A.: An open implementation of the SIFT detector and descriptor. Tech. Rep. 070012, UCLA CSD (2007)
Wangsiripitak, S., Murray, D.: Avoiding moving outliers in visual slam by tracking moving objects. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 375–380. IEEE (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Musleh, B., Martin, D., de la Escalera, A., Guinea, D.M., Garcia-Alegre, M.C. (2012). Estimation and Prediction of the Vehicle’s Motion Based on Visual Odometry and Kalman Filter. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2012. Lecture Notes in Computer Science, vol 7517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33140-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-33140-4_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33139-8
Online ISBN: 978-3-642-33140-4
eBook Packages: Computer ScienceComputer Science (R0)