Estimation and Prediction of the Vehicle’s Motion Based on Visual Odometry and Kalman Filter | SpringerLink
Skip to main content

Estimation and Prediction of the Vehicle’s Motion Based on Visual Odometry and Kalman Filter

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2012)

Abstract

The movement of the vehicle is an useful information for different applications, such as driver assistant systems or autonomous vehicles. This information can be known by different methods, for instance, by using a GPS or by means of the visual odometry. However, there are some situations where both methods do not work correctly. For example, there are areas in urban environments where the signal of the GPS is not available, as tunnels or streets with high buildings. On the other hand, the algorithms of computer vision are affected by outdoor environments, and the main source of difficulties is the variation in the ligthing conditions. A method to estimate and predict the movement of the vehicle based on visual odometry and Kalman filter is explained in this paper. The Kalman filter allows both filtering and prediction of vehicle motion, using the results from the visual odometry estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borenstein, J., Everett, H., Feng, L.: Where am i? sensors and methods for mobile robot positioning. University of Michigan 119, 120 (1996)

    Google Scholar 

  2. Demirdjian, D., Darrell, T.: Motion estimation from disparity images. In: Proceedings of Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 213–218. IEEE (2001)

    Google Scholar 

  3. Hernández, A., Nieto, J., Vidal Calleja, T., Nebot, E., et al.: Large scale visual odometry using stereo vision (2011)

    Google Scholar 

  4. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3946–3952. IEEE (2008)

    Google Scholar 

  5. NovAtel Inc., Calgary (2012), http://www.novatel.com

  6. Hu, Z., Lamosa, F., Uchimura, K.: A complete uv-disparity study for stereovision based 3d driving environment analysis. In: Fifth International Conference on 3-D Digital Imaging and Modeling, 3DIM 2005, pp. 204–211. IEEE (2005)

    Google Scholar 

  7. Kalman, R.: A new approach to linear filtering and prediction problems. Journal of basic Engineering 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  8. Labayrade, R., Aubert, D., Tarel, J.: Real time obstacle detection in stereovision on non flat road geometry through v-disparity representation. In: Intelligent Vehicle Symposium, vol. 2, pp. 646–651. IEEE (2002)

    Google Scholar 

  9. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Musleh, B., Escalera, A., Armingol, J.: Real-time pedestrian recognition in urban environments. In: Advanced Microsystems for Automotive Applications, pp. 139–147 (2011)

    Google Scholar 

  11. Musleh, B., de la Escalera, A., Armingol, J.: U-v disparity analysis in urban environments. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part II. LNCS, vol. 6928, pp. 426–432. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Nistér, D., Naroditsky, O., Bergen, J.: Computer Vision and Pattern Recognition. In: Proceedings of the 2004 IEEE Computer Society Conference on CVPR 2004 , vol. 1, p–652. IEEE (2004)

    Google Scholar 

  13. Nourani-Vatani, N., Roberts, J., Srinivasan, M.: Practical visual odometry for car-like vehicles. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3551–3557. IEEE (2009)

    Google Scholar 

  14. Parra, I., Sotelo, M., Llorca, D., Ocana, M.: Robust visual odometry for vehicle localization in urban environments. Robotica 28(3), 441–452 (2010)

    Article  Google Scholar 

  15. Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 4293–4299. IEEE (2009)

    Google Scholar 

  16. Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics 24(5), 1015–1026 (2008)

    Article  Google Scholar 

  17. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  18. Stein, G., Mano, O., Shashua, A.: A robust method for computing vehicle ego-motion. In: Proceedings of the IEEE Intelligent Vehicles Symposium, IV 2000, pp. 362–368. IEEE (2000)

    Google Scholar 

  19. Vedaldi, A.: An open implementation of the SIFT detector and descriptor. Tech. Rep. 070012, UCLA CSD (2007)

    Google Scholar 

  20. Wangsiripitak, S., Murray, D.: Avoiding moving outliers in visual slam by tracking moving objects. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 375–380. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Musleh, B., Martin, D., de la Escalera, A., Guinea, D.M., Garcia-Alegre, M.C. (2012). Estimation and Prediction of the Vehicle’s Motion Based on Visual Odometry and Kalman Filter. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2012. Lecture Notes in Computer Science, vol 7517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33140-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33140-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33139-8

  • Online ISBN: 978-3-642-33140-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics