Abstract
Most Data Warehouses (DW) are stored in Relational Database Management Systems (RDBMS) using a star-schema model. While this model yields a trade-off between performance and storage requirements, huge data warehouses experiment performance problems. Although parallel shared-nothing architectures improve on this matter by a divide-and-conquer approach, issues related to parallelizing join operations cause limitations on that amount of improvement, since they have implications concerning placement, the need to replicate data and/or on-the-fly repartitioning. In this paper, we show how these limitations can be overcome by replacing the star schema by a universal relation approach for more efficient and scalable parallelization. We evaluate the proposed approach using TPC-H benchmark, to both demonstrate that it provides highly predictable response times and almost optimal speedup.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: Proc. of the 35th SIGMOD International Conference on Management of Data, pp. 165–178 (2009)
Patel, J.M., Carey, M.J., Vernon, M.K.: Accurate modeling of the hybrid hash join algorithm. In: ACM SIGMETRICS Performance Evaluation Review, NY, USA (1994)
DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.A.: Implementation techniques for main memory database systems. In: ACM SIGMOD Record, New York, NY, USA, pp. 1–8 (1984)
Harris, E.P., Ramamohanarao, K.: Join algorithm costs revisited. The VLDB Journal 5, 064–084 (1996)
Johnson, T.: Performance Measurements of Compressed Bitmap Indices. In: Proceedings of the 25th International Conference on Very Large Data Bases, pp. 278–289 (1999)
Zhou, J., Larson, P.-A., Goldstein, J., Ding, L.: Dynamic Materialized Views. In: Int. Conference on Data Engineering, Los Alamitos, CA, USA, pp. 526–535 (2007)
Costa, J.P., Furtado, P.: Time-Stratified Sampling for Approximate Answers to Aggregate Queries. In: International Conference on Database Systems for Advanced Applications (DASFAA 2003), Kyoto, Japan, p. 215 (2003)
Liu, C., Chen, H.: A Hash Partition Strategy for Distributed Query Processing. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 371–387. Springer, Heidelberg (1996)
Shasha, D., Wang, T.-L.: Optimizing equijoin queries in distributed databases where relations are hash partitioned. ACM Trans. Database Syst. 16(2), 279–308 (1991)
Furtado, P.: Workload-Based Placement and Join Processing in Node-Partitioned Data Warehouses. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 38–47. Springer, Heidelberg (2004)
Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented DBMS. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 553–564 (2005)
Zhang, Y., Hu, W., Wang, S.: MOSS-DB: A Hardware-Aware OLAP Database. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 582–594. Springer, Heidelberg (2010)
Raman, V., Swart, G., Qiao, L., Reiss, F., Dialani, V., Kossmann, D., Narang, I., Sidle, R.: Constant-Time Query Processing. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp. 60–69 (2008)
Yma, P.: A Framework for Systematic Database Denormalization. Global Journal of Computer Science and Technology 9(4) (August 2009)
Sanders, G.L.: Denormalization Effects on Performance of RDBMS. In: Proceedings of the 34th Hawaii International Conference on System Sciences (2001)
Zaker, M., Phon-Amnuaisuk, S., Haw, S.-C.: Optimizing the data warehouse design by hierarchical denormalizing. In: Proc. 8th Conference on Applied Computer Scince (2008)
Schneider, D.A., Dewitt, D.J.: A Performance Evaluation of Four Parallel Join Algorithms in a Shared-Nothing Multiprocessor Environment, pp. 110–121 (1989)
Furtado, P.: Efficient, Chunk-Replicated Node Partitioned Data Warehouses. In: 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications, Sydney, Australia, pp. 578–583 (2008)
Yang, C., Yen, C., Tan, C., Madden, S.: Osprey: Implementing MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed Database. In: Proc. ICDE (2010)
Costa, J.P., Cecílio, J., Martins, P., Furtado, P.: ONE: A Predictable and Scalable DW Model. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 1–13. Springer, Heidelberg (2011)
PostgreSQL, http://www.postgresql.org/
TPC-H Benchmark, http://www.tpc.org/tpch/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costa, J.P., Cecílio, J., Martins, P., Furtado, P. (2012). Overcoming the Scalability Limitations of Parallel Star Schema Data Warehouses. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2012. Lecture Notes in Computer Science, vol 7439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33078-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-33078-0_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33077-3
Online ISBN: 978-3-642-33078-0
eBook Packages: Computer ScienceComputer Science (R0)