A Lazy Learning Approach to Explaining Case-Based Reasoning Solutions | SpringerLink
Skip to main content

A Lazy Learning Approach to Explaining Case-Based Reasoning Solutions

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7466))

Included in the following conference series:

  • 1507 Accesses

Abstract

We present an approach to explanation in case-based reasoning (CBR) based on demand-driven (or lazy) discovery of explanation rules for CBR solutions. The explanation rules discovered in our approach resemble the classification rules traditionally targeted by rule learning algorithms, and the learning process is adapted from one such algorithm (PRISM). The explanation rule learned for a CBR solution is required to cover both the target problem and the most similar case, and is used together with the most similar case to explain the solution, thus integrating two approaches to explanation traditionally associated with different reasoning modalities. We also show how the approach can be generalized to enable the discovery of explanation rules for CBR solutions based on k-NN. Evaluation of the approach on a variety of classification tasks demonstrates its ability to provide easily understandable explanations by exploiting the generalizing power of rule learning, while maintaining the benefits of CBR as the problem-solving method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cunningham, P., Doyle, D., Loughrey, J.: An Evaluation of the Usefulness of Case-Based Explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 122–130. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Doyle, D., Cunningham, P., Bridge, D.G., Rahman, Y.: Explanation Oriented Retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 157–168. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Evans-Romaine, K., Marling, C.: Prescribing Exercise Regimens for Cardiac and Pulmonary Disease Patients with CBR. In: McGinty, L. (ed.) ICCBR 2003 Workshop Proceedings, pp. 45–52. NTNU, Dept. of Computer and Information Science, Trondheim (2003)

    Google Scholar 

  4. Leake, D., McSherry, D.: Introduction to the Special Issue on Explanation in Case-Based Reasoning. Artif. Intell. Rev. 24, 103–108 (2005)

    Article  Google Scholar 

  5. Massie, S., Craw, S., Wiratunga, N.: A Visualisation Tool to Explain Case-Base Reasoning Solutions for Tablet Formulation. In: Macintosh, A., Ellis, R., Allen, T. (eds.) AI 2004, pp. 222–234. Springer, London (2005)

    Google Scholar 

  6. Maximini, R., Freßmann, A., Schaaf, M.: Explanation Service for Complex CBR Applications. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 302–316. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. McSherry, D.: Conversational Case-Based Reasoning in Medical Decision Making. Artif. Intell. Med. 52, 59–66 (2011)

    Article  Google Scholar 

  8. McSherry, D.: Explaining the Pros and Cons of Conclusions in CBR. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 317–330. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Plaza, E., Armengol, E., Ontañón, S.: The Explanatory Power of Symbolic Similarity in Case-Based Reasoning. Artif. Intell. Rev. 24, 145–161 (2005)

    Article  MATH  Google Scholar 

  10. Rissland, E.L.: The Fun Begins with Retrieval: Explanation and CBR. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 1–8. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational Issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389–403. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning – Perspectives and Goals. Artif. Intell. Rev. 24, 109–143 (2005)

    Article  Google Scholar 

  13. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2006)

    Google Scholar 

  14. Cendrowska, J.: PRISM: an Algorithm for Inducing Modular Rules. Int. J. Man. Mach. Stud. 27, 349–370 (1987)

    Article  MATH  Google Scholar 

  15. Bramer, M.A.: Principles of Data Mining. Springer, London (2007)

    MATH  Google Scholar 

  16. Bramer, M.A.: Inducer: A Public Domain Workbench for Data Mining. Int. J. Syst. Sci. 36, 909–919 (2005)

    Article  MATH  Google Scholar 

  17. Stahl, F., Bramer, M.A.: Induction of Modular Classification Rules: Using Jmax-Pruning. In: Bramer, M.A., Petridis, M., Hopgood, A. (eds.) AI 2010, pp. 79–92. Springer, London (2010)

    Google Scholar 

  18. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McSherry, D. (2012). A Lazy Learning Approach to Explaining Case-Based Reasoning Solutions. In: Agudo, B.D., Watson, I. (eds) Case-Based Reasoning Research and Development. ICCBR 2012. Lecture Notes in Computer Science(), vol 7466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32986-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32986-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32985-2

  • Online ISBN: 978-3-642-32986-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics