Abstract
We present an approach to explanation in case-based reasoning (CBR) based on demand-driven (or lazy) discovery of explanation rules for CBR solutions. The explanation rules discovered in our approach resemble the classification rules traditionally targeted by rule learning algorithms, and the learning process is adapted from one such algorithm (PRISM). The explanation rule learned for a CBR solution is required to cover both the target problem and the most similar case, and is used together with the most similar case to explain the solution, thus integrating two approaches to explanation traditionally associated with different reasoning modalities. We also show how the approach can be generalized to enable the discovery of explanation rules for CBR solutions based on k-NN. Evaluation of the approach on a variety of classification tasks demonstrates its ability to provide easily understandable explanations by exploiting the generalizing power of rule learning, while maintaining the benefits of CBR as the problem-solving method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cunningham, P., Doyle, D., Loughrey, J.: An Evaluation of the Usefulness of Case-Based Explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 122–130. Springer, Heidelberg (2003)
Doyle, D., Cunningham, P., Bridge, D.G., Rahman, Y.: Explanation Oriented Retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 157–168. Springer, Heidelberg (2004)
Evans-Romaine, K., Marling, C.: Prescribing Exercise Regimens for Cardiac and Pulmonary Disease Patients with CBR. In: McGinty, L. (ed.) ICCBR 2003 Workshop Proceedings, pp. 45–52. NTNU, Dept. of Computer and Information Science, Trondheim (2003)
Leake, D., McSherry, D.: Introduction to the Special Issue on Explanation in Case-Based Reasoning. Artif. Intell. Rev. 24, 103–108 (2005)
Massie, S., Craw, S., Wiratunga, N.: A Visualisation Tool to Explain Case-Base Reasoning Solutions for Tablet Formulation. In: Macintosh, A., Ellis, R., Allen, T. (eds.) AI 2004, pp. 222–234. Springer, London (2005)
Maximini, R., Freßmann, A., Schaaf, M.: Explanation Service for Complex CBR Applications. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 302–316. Springer, Heidelberg (2004)
McSherry, D.: Conversational Case-Based Reasoning in Medical Decision Making. Artif. Intell. Med. 52, 59–66 (2011)
McSherry, D.: Explaining the Pros and Cons of Conclusions in CBR. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 317–330. Springer, Heidelberg (2004)
Plaza, E., Armengol, E., Ontañón, S.: The Explanatory Power of Symbolic Similarity in Case-Based Reasoning. Artif. Intell. Rev. 24, 145–161 (2005)
Rissland, E.L.: The Fun Begins with Retrieval: Explanation and CBR. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 1–8. Springer, Heidelberg (2006)
Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational Issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389–403. Springer, Heidelberg (2004)
Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning – Perspectives and Goals. Artif. Intell. Rev. 24, 109–143 (2005)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2006)
Cendrowska, J.: PRISM: an Algorithm for Inducing Modular Rules. Int. J. Man. Mach. Stud. 27, 349–370 (1987)
Bramer, M.A.: Principles of Data Mining. Springer, London (2007)
Bramer, M.A.: Inducer: A Public Domain Workbench for Data Mining. Int. J. Syst. Sci. 36, 909–919 (2005)
Stahl, F., Bramer, M.A.: Induction of Modular Classification Rules: Using Jmax-Pruning. In: Bramer, M.A., Petridis, M., Hopgood, A. (eds.) AI 2010, pp. 79–92. Springer, London (2010)
Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McSherry, D. (2012). A Lazy Learning Approach to Explaining Case-Based Reasoning Solutions. In: Agudo, B.D., Watson, I. (eds) Case-Based Reasoning Research and Development. ICCBR 2012. Lecture Notes in Computer Science(), vol 7466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32986-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-32986-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32985-2
Online ISBN: 978-3-642-32986-9
eBook Packages: Computer ScienceComputer Science (R0)