Abstract
This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the MLPPE, enabling easy state space generation and parallel composition; and (3) several syntactic reduction techniques on the MLPPE format, for generating equivalent but smaller models.
Technically, the framework relies on an encoding of MAPA into the existing prCRL language for probabilistic automata. First, we identify a class of transformations on prCRL that can be lifted to the Markovian realm using our encoding. Then, we employ this result to reuse prCRL’s linearisation procedure to transform any MAPA specification to an equivalent MLPPE, and to lift three prCRL reduction techniques to MAPA. Additionally, we define two novel reduction techniques for MLPPEs. All our techniques treat data as well as Markovian and interactive behaviour in a fully symbolic manner, working on specifications instead of models and thus reducing state spaces prior to their construction. The framework has been implemented in our tool SCOOP, and a case study on polling systems and mutual exclusion protocols shows its practical applicability.
This research has been partially funded by NWO under grants 612.063.817 (SYRUP) and Dn 63-257 (ROCKS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using Input/Output interactive Markov chains. In: DSN, pp. 708–717 (2007)
Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. The Computer Journal 54(5), 754–775 (2011)
Deng, Y., Hennessy, M.: On the Semantics of Markov Automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg (2011)
Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and Composition in a Stochastic World. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 21–39. Springer, Heidelberg (2010)
Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351 (2010)
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)
Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Algebra of Communicating Processes, Workshops in Computing, pp. 26–62 (1995)
Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)
Hillston, J.: Process algebras for quantitative analysis. In: LICS, pp. 239–248 (2005)
Katoen, J.P., van de Pol, J., Stoelinga, M., Timmer, M.: A linear process-algebraic format with data for probabilistic automata. TCS 413(1), 36–57 (2012)
Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labeled state-to-function transition systems of stochastic process languages. In: ACCAT (to appear, 2012)
Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2(2), 93–122 (1984)
Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Distributed Computing 1(1), 53–72 (1986)
van de Pol, J., Timmer, M.: State Space Reduction of Linear Processes Using Control Flow Reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 54–68. Springer, Heidelberg (2009)
Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)
Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, MIT (1995)
Srinivasan, M.M.: Nondeterministic polling systems. Management Science 37(6), 667–681 (1991)
Stoelinga, M.I.A.: An introduction to probabilistic automata. Bulletin of the EATCS 78, 176–198 (2002)
Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling and generation of Markov automata (extended version). Tech. Rep. TR-CTIT-12-16, CTIT, University of Twente (2012)
Timmer, M., Stoelinga, M., van de Pol, J.: Confluence Reduction for Probabilistic Systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 311–325. Springer, Heidelberg (2011)
Timmer, M.: SCOOP: A tool for symbolic optimisations of probabilistic processes. In: QEST, pp. 149–150 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Timmer, M., Katoen, JP., van de Pol, J., Stoelinga, M.I.A. (2012). Efficient Modelling and Generation of Markov Automata. In: Koutny, M., Ulidowski, I. (eds) CONCUR 2012 – Concurrency Theory. CONCUR 2012. Lecture Notes in Computer Science, vol 7454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32940-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-32940-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32939-5
Online ISBN: 978-3-642-32940-1
eBook Packages: Computer ScienceComputer Science (R0)