Abstract
In this work, we explore the use of artificial neural networks (ANN) as computational models for producing English past tense verbs by combining them with the genetic algorithms (GA). The principal focus was to model the population variability exhibited by children in learning the past tense. This variability stems from genetic and environmental origins.We simulated the effects of genetic influences via variations in the neuro computational parameters of the ANNs, and the effects of environmental influences via a filter applied to the training set, implementing variation in the information available to the child produced by, for example, differences in socio-economic status. In the model, GA served two main purposes - to create the population of artificial neural networks and to encode the neuro computational parameters of the ANN into the genome. English past tense provides an interesting training domain in that it comprises a set of quasi-regular mappings. English verbs are of two types, regular verbs and irregular verbs. However, a similarity gradient also exists between these two classes. We consider the performance of the combination of ANN and GA under a range of metrics. Our tests produced encouraging results as to the utility of this method, and a foundation for future work in using a computational framework to capture population-level variability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thomas, M.S.C., McClelland, J.L.: Connectionist models of cognition. In: Sun, R. (ed.) Cambridge Handbook of Computational Cognitive Modelling, pp. 23–58. Cambridge University Press, Cambridge (2008)
Thomas, M.S.C., Karmiloff-Smith, A.: Connectionist models of development, developmental disorders and individual differences. In: Sternberg, R.J., Lautrey, J., Lubart, T. (eds.) Models of Intelligence: International Perspectives, pp. 133–150. American Psychological Association (2003)
Thomas, M.S.C., Ronald, A., Forrester, N.A.: Modelling socio-economic status effects on language development (2012) (manuscript submitted for publication)
Plunkett, K., Marchman, V.: U-shaped learning and frequency effects in a multilayered perceptron: Implications for child language acquisition. Cognition 38 (1991)
Lupyan, G., McClelland, J.L.: Did, Made, Had, Said: Capturing quasi – regularity in exceptions. In: 25th Annual Meeting of the Cognitive Science Society (2003)
Karaminis, T., Thomas, M.S.C.: A cross-linguistic model of the acquisition of inflectional morphology in English and modern Greek. In: Proceedings of the 32nd Annual Meeting of the Cognitive Science Society, August 11-14 (2010)
Thomas, M.S.C., Ronald, A., Forrester, N.A.: Modelling the mechanisms underlying population variability across development: Simulating genetic and environmental effects on cognition. DNL Tech report 2009-1 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kohli, M., Magoulas, G.D., Thomas, M. (2012). Hybrid Computational Model for Producing English Past Tense Verbs. In: Jayne, C., Yue, S., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2012. Communications in Computer and Information Science, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32909-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-32909-8_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32908-1
Online ISBN: 978-3-642-32909-8
eBook Packages: Computer ScienceComputer Science (R0)