Consensus Multi-View Photometric Stereo | SpringerLink
Skip to main content

Consensus Multi-View Photometric Stereo

  • Conference paper
Pattern Recognition (DAGM/OAGM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7476))

  • 4169 Accesses

Abstract

We propose a multi-view photometric stereo technique that uses photometric normal consistency to jointly estimate surface position and orientation. The underlying scene representation is based on oriented points, yielding more flexibility compared to smoothly varying surfaces. We demonstrate that the often employed least squares error of the Lambertian image formation model fails for wide-baseline settings without known visibility information. We then introduce a multi-view normal consistency approach and demonstrate its efficiency on synthetic and real data. In particular, our approach is able to handle occlusion, shadows, and other sources of outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonfort, T., Sturm, P.F.: Voxel carving for specular surfaces. In: ICCV (2003)

    Google Scholar 

  2. Bouguet, J.Y.: Camera calibration toolbox for matlab (2012), http://www.vision.caltech.edu/bouguetj/calib_doc/

  3. Coleman, E.N., Jain, R.: Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Computer Graphics and Image Processing 18, 309–328 (1982)

    Article  Google Scholar 

  4. Esteban, C.H., Vogiatzis, G., Cipolla, R.: Multiview photometric stereo. PAMI 30(3), 548–554 (2008)

    Article  Google Scholar 

  5. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: ICCV (2007)

    Google Scholar 

  6. Higo, T., Matsushita, Y., Ikeuchi, K.: Consensus photometric stereo. In: CVPR (2010)

    Google Scholar 

  7. Joshi, N., Kriegman, D.: Shape from varying illumination and viewpoint. In: ICCV (2007)

    Google Scholar 

  8. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction and its applications. In: Eurographics Symposium on Geometry Processing (2006)

    Google Scholar 

  9. Lim, J., Ho, J., Yang, M.H., Kriegman, D.J.: Passive photometric stereo from motion. In: ICCV (2005)

    Google Scholar 

  10. Maki, A., Cipolla, R.: Obtaining the shape of a moving object with a specular surface. In: BMVC (2009)

    Google Scholar 

  11. Maki, A., Watanabe, M., Wiles, C.: Geotensity: Combining motion and lighting for 3D surface reconstruction. IJCV 48(2), 75–90 (2002)

    Article  MATH  Google Scholar 

  12. Moses, Y., Shimshoni, I.: 3D shape recovery of smooth surfaces: Dropping the fixed-viewpoint assumption. PAMI 31(7), 1310–1324 (2009)

    Article  Google Scholar 

  13. Nehab, D., Weyrich, T., Rusinkiewicz, S.: Dense 3D reconstruction from specularity consistency. In: CVPR (2008)

    Google Scholar 

  14. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)

    Google Scholar 

  15. Simakov, D., Frolova, D., Basri, R.: Dense shape reconstruction of a moving object under arbitrary, unknown lighting. In: ICCV (2003)

    Google Scholar 

  16. Slabaugh, G.G., Culbertson, W.B., Malzbender, T., Stevens, M.R., Schafer, R.W.: Methods for volumetric reconstruction of visual scenes. IJCV 57(3), 179–199 (2004)

    Article  Google Scholar 

  17. Weber, M., Blake, A., Cipolla, R.: Towards a complete dense geometric and photometric reconstruction under varying pose and illumination. In: BMVC (2002)

    Google Scholar 

  18. Yoshiyasu, Y., Yamazaki, N.: Topology-adaptive multi-view photometric stereo. In: CVPR (2011)

    Google Scholar 

  19. Zhang, L., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and motion under varying illumination: Unifying structure from motion, photometric stereo, and multi-view stereo. In: ICCV (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beljan, M., Ackermann, J., Goesele, M. (2012). Consensus Multi-View Photometric Stereo. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics