Identification and Visualisation of Pattern Migrations in Big Network Data | SpringerLink
Skip to main content

Identification and Visualisation of Pattern Migrations in Big Network Data

  • Conference paper
PRICAI 2012: Trends in Artificial Intelligence (PRICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7458))

Included in the following conference series:

  • 2896 Accesses

Abstract

In this paper, we described a technique for identifying and presenting frequent pattern migrations in temporal network data. The migrations are identified using the concept of a Migration Matrix and presented using a visualisation tool. The technique has been built into the Pattern Migration Identification and Visualisation (PMIV) framework which is designed to operate using trend clusters which have been extracted from “big” network data using a Self Organising Map technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nohuddin, P.N.E., Christley, R., Coenen, F., Setzkorn, C.: Trend Mining in Social Networks: A Study Using a Large Cattle Movement Database. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 464–475. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C.: Detecting Temporal Pattern and Cluster Changes in Social Networks: A Study Focusing UK Cattle Movement Database. In: Shi, Z., Vadera, S., Aamodt, A., Leake, D. (eds.) IIP 2010. IFIP AICT, vol. 340, pp. 163–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Kohonen, T.: The Self Organizing Maps. Series in Information Sciences, vol. 30. Springer, Heidelberg (1995)

    Book  Google Scholar 

  4. Kohonen, T.: The Self Organizing Maps. Neurocomputing Elsevier Science 21, 1–6 (1998)

    Article  MATH  Google Scholar 

  5. Sugiyama, K., Misue, K.: Graph Drawing by the Magnetic Spring Model. Journal of Visual Languages and Computing 6(3), 217–231 (1995)

    Article  Google Scholar 

  6. Hido, S., Idé, T., Kashima, H., Kubo, H., Matsuzawa, H.: Unsupervised Change Analysis Using Supervised Learning. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 148–159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Newman, M.E.J.: Fast Algorithms for Detecting Community Structure in Networks. Journal of Physical Review E, 1-5 (2004)

    Google Scholar 

  8. Nohuddin, P.N.E., Sunayama, W., Christley, R., Coenen, F., Setzkorn, C.: Trend Mining and Visualisation in Social Networks. In: Proc. of the 31st SGAI International Conference on Artificial Intelligence (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nohuddin, P.N.E., Coenen, F., Christley, R., Sunayama, W. (2012). Identification and Visualisation of Pattern Migrations in Big Network Data. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics