Piecewise Linear Approximation of n-Dimensional Parametric Curves Using Particle Swarms | SpringerLink
Skip to main content

Piecewise Linear Approximation of n-Dimensional Parametric Curves Using Particle Swarms

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

  • 1956 Accesses

Abstract

This paper derives a new algorithm for piecewise linear approximation of n-dimensional parametric curves, specifically to be used with particle swarm optimization. The aim of the algorithm is to find the optimal piecewise linear approximation for a predefined number of segments. The performance of this algorithm is evaluated on a set of functions of varying dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burden, R.L. and Faires, J.D.: Numerical Analysis. Brooks Cole (2007)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  3. Kennedy, J., Mendes, R.: Population Structure and Particle Performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1671–1676 (2002)

    Google Scholar 

  4. Peer, E.S., van den Bergh, F., Engelbrecht, A.P.: Using Neighborhoods with the Guaranteed Convergence PSO. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 235–242 (2003)

    Google Scholar 

  5. Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pattern Recognition 12(5), 327–331 (1980)

    Article  Google Scholar 

  6. Salotti, M.: An efficient algorithm for the optimal polygonal approximation of digitized curves. Pattern Recognition Letters 22(2), 215–221 (2001)

    Article  MATH  Google Scholar 

  7. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall (1976)

    Google Scholar 

  8. Velho, L., de Figueiredo, L.H., Gomes, J.: Journal of the Brazilian Computer Society 3(3), 1–14 (1997)

    Article  Google Scholar 

  9. Imamoto, A., Tang, B.: A Recursive Descent Algorithm for Finding the Optimal Minimax Piecewise Linear Approximation of Convex Functions. In: Advances in Electrical and Electronics Engineering, pp. 287–289 (2008)

    Google Scholar 

  10. Manis, G., Papakonstantinou, G., Tsanakas, P.: Optimal Piecewise Linear Approximation of Digitized Curves. In: Proceedings of International Conference on Digital Signal Processing, pp. 1079–1081 (1997)

    Google Scholar 

  11. Horst, J.A., Beichl, I.: A Simple Algorithm for Eficient Piecewise Linear Approximation of Space Curves. In: Proceedings of International Conference on Image Processing, pp. 744–747 (1997)

    Google Scholar 

  12. Pavlidis, T.: Polygonal Approximations by Newton’s Method. IEEE Transactions on Computers 25(8), 800–807 (1977)

    Article  MathSciNet  Google Scholar 

  13. Dunham, J.G.: Optimum uniform piecewise linear approximation of planar curves. IEEE Transactionson Pattern Analysis and Machine Intelligence PAMI-8(1), 67–75 (1986)

    Article  Google Scholar 

  14. Stone, H.: Approximation of Curves by Line Segments. Mathematics of Computation 15(73), 40–47 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engelbrecht, A.P.: Particle Swarm Optimization: Velocity Initialization. Accepted for IEEE Congress on Eevolutionary Computation (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cleghorn, C.W., Engelbrecht, A.P. (2012). Piecewise Linear Approximation of n-Dimensional Parametric Curves Using Particle Swarms. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics