Scalability Study of Particle Swarm Optimizers in Dynamic Environments | SpringerLink
Skip to main content

Scalability Study of Particle Swarm Optimizers in Dynamic Environments

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

This study investigates the scalability of three particle swarm optimizers (PSO) on dynamic environments. The charged PSO (CPSO), quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algorithms are evaluated on a number of DF1 and moving peaks benchmark (MPB) environments that differ with respect to the severity and frequency of change. It is shown that dHPSO scales better to high severity and high frequency DF1 environments. For MPB environments, similar scalability results are observed, with dHPSO obtaining the best average results over all test cases. The good performance of dHPSO is ascribed to its ability to explore and exploit the search space more efficiently than CPSO and QPSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blackwell, T.: Particle swarms and population diversity. Soft Computing – A Fusion of Foundations, Methodologies and Applications 9(11), 793–802 (2005)

    MATH  Google Scholar 

  2. Blackwell, T., Bentley, P.: Dynamic search with charged swarms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 19–26 (2002)

    Google Scholar 

  3. Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

    Article  Google Scholar 

  5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3. IEEE (1999)

    Google Scholar 

  6. Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 94–100. IEEE (2001)

    Google Scholar 

  7. Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87. IEEE (2003)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  10. Leonard, B., Engelbrecht, A., van Wyk, A.: Heterogeneous particle swarms in dynamic environments. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 1–8. IEEE (2011)

    Google Scholar 

  11. Morrison, R., De Jong, K.: A test problem generator for non-stationary environments. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, IEEE (1999)

    Google Scholar 

  12. Morrison, R.: Performance measurement in dynamic environments. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 5–8 (2003)

    Google Scholar 

  13. Pamparà, G., Engelbrecht, A., Cloete, T.: Cilib: A collaborative framework for computational intelligence algorithms – part i. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1750–1757. IEEE (2008)

    Google Scholar 

  14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leonard, B.J., Engelbrecht, A.P. (2012). Scalability Study of Particle Swarm Optimizers in Dynamic Environments. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics