Abstract
This study investigates the scalability of three particle swarm optimizers (PSO) on dynamic environments. The charged PSO (CPSO), quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algorithms are evaluated on a number of DF1 and moving peaks benchmark (MPB) environments that differ with respect to the severity and frequency of change. It is shown that dHPSO scales better to high severity and high frequency DF1 environments. For MPB environments, similar scalability results are observed, with dHPSO obtaining the best average results over all test cases. The good performance of dHPSO is ascribed to its ability to explore and exploit the search space more efficiently than CPSO and QPSO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blackwell, T.: Particle swarms and population diversity. Soft Computing – A Fusion of Foundations, Methodologies and Applications 9(11), 793–802 (2005)
Blackwell, T., Bentley, P.: Dynamic search with charged swarms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 19–26 (2002)
Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)
Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)
Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3. IEEE (1999)
Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 94–100. IEEE (2001)
Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)
Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87. IEEE (2003)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Leonard, B., Engelbrecht, A., van Wyk, A.: Heterogeneous particle swarms in dynamic environments. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 1–8. IEEE (2011)
Morrison, R., De Jong, K.: A test problem generator for non-stationary environments. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, IEEE (1999)
Morrison, R.: Performance measurement in dynamic environments. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 5–8 (2003)
Pamparà, G., Engelbrecht, A., Cloete, T.: Cilib: A collaborative framework for computational intelligence algorithms – part i. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1750–1757. IEEE (2008)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leonard, B.J., Engelbrecht, A.P. (2012). Scalability Study of Particle Swarm Optimizers in Dynamic Environments. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-32650-9_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32649-3
Online ISBN: 978-3-642-32650-9
eBook Packages: Computer ScienceComputer Science (R0)