Abstract
Over the last decade, the advances in the high-throughput omic technologies have given the possibility to profile tumor cells at different levels, fostering the discovery of new biological data and the proliferation of a large number of bio-technological databases. In this paper we describe a framework for enabling the interoperability among different biological data sources and for ultimately supporting expert users in the complex process of extraction, navigation and visualization of the precious knowledge hidden in such a huge quantity of data. The system will be used in a pilot study on the Multiple Myeloma (MM).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief Bioinform. 7(3), 243–255 (2006)
Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 3, 673–683 (2004)
Boutros, P.C.: Fun with microarrays part iii: Integration and the end of microarrays as we know them. Hypothesis 6(1) (2008)
Catarci, T., Santucci, G.: Query by diagram: A graphical environment for querying databases. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota, May 24-27, p. 515. ACM Press (1994)
Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in protein interaction networks. Briefings in Functional Genomics and Proteomics 7(2), 147–156 (2008)
Costa, G., Manco, G., Ortale, R.: An incremental clustering scheme for data de-duplication. Data Min. Knowl. Discov. 20(1), 152–187 (2010)
Cramer, P.E., Cirrito, J.R., Wesson, D.W., Lee, C.Y.D., Karlo, J.C., Zinn, A.E., Casali, B.T., Restivo, J.L., Goebel, W.D., James, M.J., Brunden, K.R., Wilson, D.A., Landreth, G.E.: Apoe-directed therapeutics rapidly clear ß-amyloid and reverse deficits in ad mouse models. Science 335(6075), 1503–1506 (2012)
Deodhar, M., Gupta, G., Ghosh, J., Cho, H., Dhillon, I.S.: A scalable framework for discovering coherent co-clusters in noisy data. In: Pohoreckyj Danyluk, A., Bottou, L., Littman, M.L. (eds.) ICML. ACM International Conference Proceeding Series, vol. 382, p. 31. ACM (2009)
Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. In: ISMB, pp. 145–154 (2002)
Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: KDD, pp. 43–52 (1999)
Plessis, L.D., Kunca, N., Dessimoz, C.: The what, where, how and why of gene ontology a primer for bioinformaticians. Briefings in Bioinformatics (2011)
Elfeky, M.G., Saad, A.A., Fouad, S.A.: ODMQL: Object Data Mining Query Language. In: Dittrich, K.R., Oliva, M., Rodriguez, M.E. (eds.) ECOOP-WS 2000. LNCS, vol. 1944, pp. 128–140. Springer, Heidelberg (2001)
Ernst, J., Bar-Joseph, Z.: Stem: a tool for the analysis of short time series gene expression data. BMC Bioinformatics (2006)
Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression data. Bioinformatics 21(suppl. 1), i159–i168
Fogel, D.B.: Evolutionary computation - toward a new philosophy of machine intelligence, 3rd edn. Wiley-VCH (2006)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: Predict: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7 (2011)
Guzzi, P.H., Mina, M., Guerra, C., Cannataro, M.: Semantic similarity analysis of protein data: assessment with biological features and issues. Briefings in Bioinformatics (2011)
Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS, pp. 1–9 (2006)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)
Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. Bioinformatics 18(suppl. 1), S145–S154 (2002)
Harris, M.A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G.M., Blake, J.A., Bult, C., Dolan, M., Drabkin, H., Eppig, J.T., Hill, D.P., Ni, L., Ringwald, M., Balakrishnan, R., Cherry, J.M., Christie, K.R., Costanzo, M.C., Dwight, S.S., Engel, S., Fisk, D.G., Hirschman, J.E., Hong, E.L., Nash, R.S., Sethuraman, A., Theesfeld, C.L., Botstein, D., Dolinski, K., Feierbach, B., Berardini, T., Mundodi, S., Rhee, S.Y., Apweiler, R., Barrell, D., Camon, E., Dimmer, E., Lee, V., Chisholm, R., Gaudet, P., Kibbe, W., Kishore, R., Schwarz, E.M., Sternberg, P., Gwinn, M., Hannick, L., Wortman, J., Berriman, M., Wood, V., Tonellato, P., Jaiswal, P., Seigfried, T., White, R.: The gene ontology (go) database and informatics resource. Nucleic Acids Res. 32, 258–261 (2004)
He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE, pp. 38–49 (2006)
Hu, G., Agarwal, P.: Human disease-drug network based on genomic expression profiles. PLoS One 4(8), e6536 (2009)
Hvoreckya, J., Drlikb, M., Munk, M.: The effect of visual query languages on the improvement of information retrieval skills. Procedia - Social and Behavioral Sciences 2(2), 717–723 (2010)
Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data Min. Knowl. Discov. 3(4), 373–408 (1999)
Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query processing in the presence of linkage. PVLDB 3(1), 429–438 (2010)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31 (September 1999)
Karmel, R., Gibson, D.: Event-based record linkage in health and aged care services data: a methodological innovation. BMC Health Services Research (2007)
Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual Analytics: Scope and Challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)
Koza, J.R.: Genetic Programming On the Programming of Computers by Means of Natural Selection. MIT Press (1992)
Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny. J. of the Royal Society (2010)
Lamb, J.: The Connectivity Map: a new tool for biomedical research. Nature Reviews Cancer 7(1), 54–60 (2007)
Li, J., Zhu, X., Chen, J.Y.: Building disease-specific drug-protein connectivity maps from molecular interaction networks and pubmed abstracts. PLoS Comput. Biol. 5(7), e1000450 (2009)
Massari, A., Pavani, S., Saladini, L., Chrysanthis, P.K.: Qbi: Query by icons. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, p. 477. ACM Press (1995)
Natale, D., Arighi, C., Barker, W., Blake, J., Chang, T.-C., Hu, Z., Liu, H., Smith, B., Wu, C.: Framework for a protein ontology. BMC Bioinformatics 8 (2007)
Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)
Perlman, L., Gottlieb, A., Atias, N., Ruppin, E., Sharan, R.: Combining drug and gene similarity measures for drug-target elucidation. Journal of Computational Biology a Journal of Computational Molecular Cell Biology 18(2), 133–145 (2011)
Polyviou, S., Evripidou, P., Samaras, G.: Query by browsing: A visual query language based on the relational model and the desktop user interface paradigm. In: The 3rd Hellenic Symposium on Data Management (2004)
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)
Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3), 93–106 (2008)
Shah, M., Corbeil, J.: A general framework for analyzing data from two short time-series microarray experiments. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8(1), 14–26 (2011)
Sirota, M., Dudley, J.T., Kim, J., Chiang, A.P., Morgan, A.A., Sweet-Cordero, A., Sage, J., Butte, A.J.: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Science Translational Medicine 3(96), 96–77 (2011)
Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network Regression with Predictive Clustering Trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 333–348. Springer, Heidelberg (2011)
Wang, X., Wu, M., Li, Z., Chan, C.: Short time-series microarray analysis: Methods and challenges. BMC Systems Biology 2 (2008)
Zhao, P., Han, J.: On graph query optimization in large networks. Proc. VLDB Endow. 3(1-2), 340–351 (2010)
Zhu, L., Ng, W.K., Cheng, J.: Structure and attribute index for approximate graph matching in large graphs. Inf. Syst. 36(6), 958–972 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ceci, M. et al. (2012). Toward a Semantic Framework for the Querying, Mining and Visualization of Cancer Microenvironment Data. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2012. Lecture Notes in Computer Science, vol 7451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32395-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-32395-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32394-2
Online ISBN: 978-3-642-32395-9
eBook Packages: Computer ScienceComputer Science (R0)