Toward a Semantic Framework for the Querying, Mining and Visualization of Cancer Microenvironment Data | SpringerLink
Skip to main content

Toward a Semantic Framework for the Querying, Mining and Visualization of Cancer Microenvironment Data

  • Conference paper
Information Technology in Bio- and Medical Informatics (ITBAM 2012)

Abstract

Over the last decade, the advances in the high-throughput omic technologies have given the possibility to profile tumor cells at different levels, fostering the discovery of new biological data and the proliferation of a large number of bio-technological databases. In this paper we describe a framework for enabling the interoperability among different biological data sources and for ultimately supporting expert users in the complex process of extraction, navigation and visualization of the precious knowledge hidden in such a huge quantity of data. The system will be used in a pilot study on the Multiple Myeloma (MM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief Bioinform. 7(3), 243–255 (2006)

    Article  Google Scholar 

  2. Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 3, 673–683 (2004)

    Article  Google Scholar 

  3. Boutros, P.C.: Fun with microarrays part iii: Integration and the end of microarrays as we know them. Hypothesis 6(1) (2008)

    Google Scholar 

  4. Catarci, T., Santucci, G.: Query by diagram: A graphical environment for querying databases. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota, May 24-27, p. 515. ACM Press (1994)

    Google Scholar 

  5. Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in protein interaction networks. Briefings in Functional Genomics and Proteomics 7(2), 147–156 (2008)

    Article  Google Scholar 

  6. Costa, G., Manco, G., Ortale, R.: An incremental clustering scheme for data de-duplication. Data Min. Knowl. Discov. 20(1), 152–187 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cramer, P.E., Cirrito, J.R., Wesson, D.W., Lee, C.Y.D., Karlo, J.C., Zinn, A.E., Casali, B.T., Restivo, J.L., Goebel, W.D., James, M.J., Brunden, K.R., Wilson, D.A., Landreth, G.E.: Apoe-directed therapeutics rapidly clear ß-amyloid and reverse deficits in ad mouse models. Science 335(6075), 1503–1506 (2012)

    Article  Google Scholar 

  8. Deodhar, M., Gupta, G., Ghosh, J., Cho, H., Dhillon, I.S.: A scalable framework for discovering coherent co-clusters in noisy data. In: Pohoreckyj Danyluk, A., Bottou, L., Littman, M.L. (eds.) ICML. ACM International Conference Proceeding Series, vol. 382, p. 31. ACM (2009)

    Google Scholar 

  9. Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. In: ISMB, pp. 145–154 (2002)

    Google Scholar 

  10. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: KDD, pp. 43–52 (1999)

    Google Scholar 

  11. Plessis, L.D., Kunca, N., Dessimoz, C.: The what, where, how and why of gene ontology a primer for bioinformaticians. Briefings in Bioinformatics (2011)

    Google Scholar 

  12. Elfeky, M.G., Saad, A.A., Fouad, S.A.: ODMQL: Object Data Mining Query Language. In: Dittrich, K.R., Oliva, M., Rodriguez, M.E. (eds.) ECOOP-WS 2000. LNCS, vol. 1944, pp. 128–140. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Ernst, J., Bar-Joseph, Z.: Stem: a tool for the analysis of short time series gene expression data. BMC Bioinformatics (2006)

    Google Scholar 

  14. Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression data. Bioinformatics 21(suppl. 1), i159–i168

    Google Scholar 

  15. Fogel, D.B.: Evolutionary computation - toward a new philosophy of machine intelligence, 3rd edn. Wiley-VCH (2006)

    Google Scholar 

  16. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)

    Google Scholar 

  17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: Predict: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7 (2011)

    Google Scholar 

  19. Guzzi, P.H., Mina, M., Guerra, C., Cannataro, M.: Semantic similarity analysis of protein data: assessment with biological features and issues. Briefings in Bioinformatics (2011)

    Google Scholar 

  20. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS, pp. 1–9 (2006)

    Google Scholar 

  21. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)

    Google Scholar 

  22. Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. Bioinformatics 18(suppl. 1), S145–S154 (2002)

    Article  Google Scholar 

  23. Harris, M.A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G.M., Blake, J.A., Bult, C., Dolan, M., Drabkin, H., Eppig, J.T., Hill, D.P., Ni, L., Ringwald, M., Balakrishnan, R., Cherry, J.M., Christie, K.R., Costanzo, M.C., Dwight, S.S., Engel, S., Fisk, D.G., Hirschman, J.E., Hong, E.L., Nash, R.S., Sethuraman, A., Theesfeld, C.L., Botstein, D., Dolinski, K., Feierbach, B., Berardini, T., Mundodi, S., Rhee, S.Y., Apweiler, R., Barrell, D., Camon, E., Dimmer, E., Lee, V., Chisholm, R., Gaudet, P., Kibbe, W., Kishore, R., Schwarz, E.M., Sternberg, P., Gwinn, M., Hannick, L., Wortman, J., Berriman, M., Wood, V., Tonellato, P., Jaiswal, P., Seigfried, T., White, R.: The gene ontology (go) database and informatics resource. Nucleic Acids Res. 32, 258–261 (2004)

    Article  Google Scholar 

  24. He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE, pp. 38–49 (2006)

    Google Scholar 

  25. Hu, G., Agarwal, P.: Human disease-drug network based on genomic expression profiles. PLoS One 4(8), e6536 (2009)

    Article  Google Scholar 

  26. Hvoreckya, J., Drlikb, M., Munk, M.: The effect of visual query languages on the improvement of information retrieval skills. Procedia - Social and Behavioral Sciences 2(2), 717–723 (2010)

    Article  Google Scholar 

  27. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data Min. Knowl. Discov. 3(4), 373–408 (1999)

    Article  Google Scholar 

  28. Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query processing in the presence of linkage. PVLDB 3(1), 429–438 (2010)

    Google Scholar 

  29. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31 (September 1999)

    Google Scholar 

  30. Karmel, R., Gibson, D.: Event-based record linkage in health and aged care services data: a methodological innovation. BMC Health Services Research (2007)

    Google Scholar 

  31. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual Analytics: Scope and Challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Koza, J.R.: Genetic Programming On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  33. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny. J. of the Royal Society (2010)

    Google Scholar 

  34. Lamb, J.: The Connectivity Map: a new tool for biomedical research. Nature Reviews Cancer 7(1), 54–60 (2007)

    Article  Google Scholar 

  35. Li, J., Zhu, X., Chen, J.Y.: Building disease-specific drug-protein connectivity maps from molecular interaction networks and pubmed abstracts. PLoS Comput. Biol. 5(7), e1000450 (2009)

    Article  Google Scholar 

  36. Massari, A., Pavani, S., Saladini, L., Chrysanthis, P.K.: Qbi: Query by icons. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, p. 477. ACM Press (1995)

    Google Scholar 

  37. Natale, D., Arighi, C., Barker, W., Blake, J., Chang, T.-C., Hu, Z., Liu, H., Smith, B., Wu, C.: Framework for a protein ontology. BMC Bioinformatics 8 (2007)

    Google Scholar 

  38. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  39. Perlman, L., Gottlieb, A., Atias, N., Ruppin, E., Sharan, R.: Combining drug and gene similarity measures for drug-target elucidation. Journal of Computational Biology a Journal of Computational Molecular Cell Biology 18(2), 133–145 (2011)

    Google Scholar 

  40. Polyviou, S., Evripidou, P., Samaras, G.: Query by browsing: A visual query language based on the relational model and the desktop user interface paradigm. In: The 3rd Hellenic Symposium on Data Management (2004)

    Google Scholar 

  41. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  42. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3), 93–106 (2008)

    Google Scholar 

  43. Shah, M., Corbeil, J.: A general framework for analyzing data from two short time-series microarray experiments. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8(1), 14–26 (2011)

    Article  Google Scholar 

  44. Sirota, M., Dudley, J.T., Kim, J., Chiang, A.P., Morgan, A.A., Sweet-Cordero, A., Sage, J., Butte, A.J.: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Science Translational Medicine 3(96), 96–77 (2011)

    Google Scholar 

  45. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network Regression with Predictive Clustering Trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 333–348. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  46. Wang, X., Wu, M., Li, Z., Chan, C.: Short time-series microarray analysis: Methods and challenges. BMC Systems Biology 2 (2008)

    Google Scholar 

  47. Zhao, P., Han, J.: On graph query optimization in large networks. Proc. VLDB Endow. 3(1-2), 340–351 (2010)

    Google Scholar 

  48. Zhu, L., Ng, W.K., Cheng, J.: Structure and attribute index for approximate graph matching in large graphs. Inf. Syst. 36(6), 958–972 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceci, M. et al. (2012). Toward a Semantic Framework for the Querying, Mining and Visualization of Cancer Microenvironment Data. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2012. Lecture Notes in Computer Science, vol 7451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32395-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32395-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32394-2

  • Online ISBN: 978-3-642-32395-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics