The “Mechatronic Board”: A Tool to Study Intrinsic Motivations in Humans, Monkeys, and Humanoid Robots | SpringerLink
Skip to main content

The “Mechatronic Board”: A Tool to Study Intrinsic Motivations in Humans, Monkeys, and Humanoid Robots

  • Chapter
  • First Online:
Intrinsically Motivated Learning in Natural and Artificial Systems

Abstract

In this chapter the design and fabrication of a new mechatronic platform (called “mechatronic board”) for behavioural analysis of children, non-human primates, and robots are presented and discussed. The platform is the result of a multidisciplinary design approach which merges indications coming from neuroscientists, psychologists, primatologists, roboticists, and bioengineers, with the main goal of studying learning mechanisms driven by intrinsic motivations and curiosity. This chapter firstly introduces the main requirements of the platform, coming from the different needs of the experiments involving the different types of participants. Then, it provides a detailed analysis of the main features of the mechatronic board, focusing on its key aspects which allow the study of intrinsically motivated learning in children and non-human primates. Finally, it shows some preliminary results on curiosity-driven learning coming from pilot experiments involving children, capuchin monkeys, and a computational model of the behaviour of these organisms tested with a humanoid robot (the iCub robot). These experiments investigate the capacity of children, capuchin monkeys, and a computational model implemented on the iCub robot to learn action-outcome contingencies on the basis of intrinsic motivations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldassarre, G.: What are intrinsic motivations? A biological perspective. In: Cangelosi, A., Triesch, J., Fasel, I., Rohlfing, K., Nori, F., Oudeyer, P.-Y., Schlesinger, M., Nagai, Y. (eds.) Proceedings of the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob-2011), pp. E1–8. IEEE, Piscataway (2011)

    Google Scholar 

  2. Baldassarre, G., Mannella, F., Fiore, V., Redgrave, P., Gurney, K., Mirolli, M.: Intrinsically motivated action-outcome learning and goal-based action recall: A system-level bio-constrained computational model. Neural Netw. (2012, in press)

    Google Scholar 

  3. Baldassarre, G., Mirolli, M.: Deciding which skill to learn when: Temporal-difference competence-based intrinsic motivation (TD-CB-IM): In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 255–276. Springer, Berlin (2012)

    Google Scholar 

  4. Caligiore, D., Borghi, A., Parisi, D., Baldassarre, G.: Tropicals: A computational embodied neuroscience model of compatibility effects. Psychol. Rev. 117(4), 1188–1228 (2010)

    Article  Google Scholar 

  5. Glow, P., Roberts, J.S., Russell, A.: Sound and light preference behaviour in naïve adult rats. Aust. J. Psychol. 24, 173–178 (1972)

    Article  Google Scholar 

  6. Glow, P., Winefield, A.H.: Response-contingent sensory change in a causally structured environment. Anim. Learn. Behav. 6, 1–18 (1978)

    Article  Google Scholar 

  7. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15(1), 20–25 (1992)

    Article  Google Scholar 

  8. Harlow, H.F.: Learning and satiation of response in intrinsically motivated complex puzzle performance by monkeys. J. Comp. Physiol. Psychol. 43(4), 289–294 (1950)

    Article  Google Scholar 

  9. Harlow, H.F., Harlow, M.K., Meyer, D.R.: Learning motivated by a manipulation drive. J. Exp. Psychol. 40, 228–234 (1950)

    Article  Google Scholar 

  10. Houk, J.C., Adams, J.L., Barto, A.G.: A model of how the basal ganglia generate and use neural signals ghat predict reinforcement. In: Houk, J.C., Davids, J.L., Beiser, D.G. (eds.) Models of Information Processing in the Basal Ganglia, pp. 249–270. MIT, Cambridge (1995)

    Google Scholar 

  11. Jacobs, G.: A perspective on colour vision in platyrrhine monkeys. Vis. Res. 38, 3307–3313 (1998)

    Article  Google Scholar 

  12. Kaplan, F., Oudeyer, P.: In: search of the neural circuits of intrinsic motivation. Front. Neuorosci. 1, 225–236 (2007)

    Article  Google Scholar 

  13. Klemke, E.D. (ed.): Introductory Readings in the Philosophy of Science. Prometheus Books, New York (1980)

    Google Scholar 

  14. Lee, M.H., Meng, Q., Chao, F.: Staged competence learning in developmental robotics. Adap. Behav, 15(3), 241–255 (2007)

    Article  Google Scholar 

  15. Lockmann, J.J.: A perception-action perspective on tool use development. Child Dev. 71(1), 137–144 (2000)

    Article  Google Scholar 

  16. Martin, P., Bateson, P. (eds.): Measuring Behaviour: An introductory guide, Cambridge University Press, Cambridge (1998)

    Google Scholar 

  17. Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001)

    Article  Google Scholar 

  18. Mirolli, M., Baldassarre, G.: Functions and mechanisms of intrinsic motivations: The knowledge versus competence distinction. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 47–72. Springer, Berlin (2012)

    Google Scholar 

  19. Mirolli, M., Santucci, V.G., Baldassarre, G.: Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: A simulated robotic study. Neural Netw. (2012, submitted)

    Google Scholar 

  20. Natale, L., Nori, F., Metta, G., Fumagalli, M., Ivaldi, S., Pattacini, U., Randazzo, M., Schmitz, A., Sandini, G.: The icub platform: A tool for studying intrinsically motivated learning. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 433–458. Springer, Berlin (2012)

    Google Scholar 

  21. Redgrave, P., Gurney, K.: The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci. 7(12), 967–975 (2006)

    Article  Google Scholar 

  22. Redgrave, P., Gurney, K., Stafford, T., Thirkettle, M., Lewis, J.: The role of the basal ganglia in discovering novel actions. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 129–149. Springer, Berlin (2012)

    Google Scholar 

  23. Schembri, M., Mirolli, M., Baldassarre, G.: Evolution and learning in an intrinsically motivated reinforcement learning robot. In: Almeida e Costa Fernando, Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) Advances in Artificial Life. Proceedings of the 9th European Conference on Artificial Life (ECAL2007). Lecture Notes in Artificial Intelligence, vol. 4648, pp. 294–333, Lisbon, Portugal, September 2007. Springer, Berlin (2007a)

    Google Scholar 

  24. Schembri, M., Mirolli, M., Baldassarre, G.: Evolving childhood’s length and learning parameters in an intrinsically motivated reinforcement learning robot. In: Berthouze, L., Dhristiopher, P.G., Littman, M., Kozima, H., Balkenius, C. (eds.) Proceedings of the Seventh International Conference on Epigenetic Robotics, vol. 134, pp. 141–148. Lund University, Lund (2007b)

    Google Scholar 

  25. Schembri, M., Mirolli, M., Baldassarre, G.: Evolving internal reinforcers for an intrinsically motivated reinforcement-learning robot. In: Demiris, Y., Mareschal, D., Scassellati, B., Weng, J. (eds.) Proceedings of the 6th International Conference on Development and Learning, pp. E1–6. Braga, Portugal, July 2007. Imperial College, London (2007c)

    Google Scholar 

  26. Stout, A., Barto, A.G.: Competence progress intrinsic motivation. In: Kuipers, B., Shultz, T., Stoytchev, A., Yu, C. (eds.) IEEE International Conference on Development and Learning (ICDL2010). IEEE, Piscataway (2010)

    Google Scholar 

  27. Taffoni, F., Vespignani, M., Formica, D., Cavallo, G., Polizzi di Sorrentino, E., Sabbatini, G., Truppa, V., Mirolli, M., Baldassarre, G., Visalberghi, E., Keller, F., Guglielmelli, E.: A mechatronic platform for behavioral analysis on nonhuman primates. J. Integr. Neurosci. 11(1), 87–101 (2012)

    Article  Google Scholar 

  28. Thelen, E., Smith, L.: A Dynamic Systems Approach to the Development of Cognition and Action. MIT, Boston (1994)

    Google Scholar 

  29. Wasserman, E., Zentall, T.: Comparative Cognition: Experimental Explorations of Animal Intelligence. Oxford University Press, New York (2006)

    Google Scholar 

  30. Welker, W.L.: Some determinants of play and exploration in chimpanzees. J. Comp. Physiol. Psychol. 49, 84–89 (1956)

    Article  Google Scholar 

  31. White, R.W.: Motivation reconsidered: The concept of competence. Psychol. Rev. 66, 297–333 (1959)

    Article  Google Scholar 

  32. Yin, H.H., Knowlton, B.J.: The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7(6), 464–476 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Community 7th Framework Programme (FP7/2007–2013), “Challenge 2: Cognitive Systems, Interaction, Robotics”, Grant Agreement No. ICT-IP-231722, and Project “IM-CLeVeR: Intrinsically Motivated Cumulative Learning Versatile Robots”. It was also supported by the Italian Ministry of University and Research, FIRB Research Program 2006, no. RBAP06SPK5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Taffoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taffoni, F. et al. (2013). The “Mechatronic Board”: A Tool to Study Intrinsic Motivations in Humans, Monkeys, and Humanoid Robots. In: Baldassarre, G., Mirolli, M. (eds) Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32375-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32375-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32374-4

  • Online ISBN: 978-3-642-32375-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics