Abstract
We introduce the concept of quasi-Lovász extension as being a mapping \(f: I^n \rightarrow \textrm{I\!R}\) defined over a nonempty real interval I containing the origin, and which can be factorized as f(x 1,…,x n ) = L(ϕ(x 1),…,ϕ(x n )), where L is the Lovász extension of a pseudo-Boolean function \(\psi:\{0,1\}^n\rightarrow \textrm{I\!R}\) (i.e., the function \(L:\textrm{I\!R}^n\rightarrow \textrm{I\!R}\) whose restriction to each simplex of the standard triangulation of [0,1]n is the unique affine function which agrees with ψ at the vertices of this simplex) and \(\varphi\colon I\rightarrow \textrm{I\!R}\) is a nondecreasing function vanishing at the origin. These functions appear naturally within the scope of decision making under uncertainty since they subsume overall preference functionals associated with discrete Choquet integrals whose variables are transformed by a given utility function.
To axiomatize the class of quasi-Lovász extensions, we propose generalizations of properties used to characterize the Lovász extensions, including a comonotonic version of modularity and a natural relaxation of homogeneity. A variant of the latter property enables us to axiomatize also the class of symmetric quasi-Lovász extensions, which are compositions of symmetric Lovász extensions with 1-place nondecreasing odd functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. STUDFUZZ. Springer, Berlin (2007)
Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Handbook of Measure Theory, vol. II, pp. 1329–1379. North-Holland, Amsterdam (2002)
Bouyssou, D., Dubois, D., Prade, H., Pirlot, M. (eds.): Decision-Making Process - Concepts and Methods. ISTE/John Wiley, London (2009)
Couceiro, M., Marichal, J.-L.: Axiomatizations of Lovász extensions and symmetric Lovász extensions of pseudo-Boolean functions. Fuzzy Sets and Systems 181(1), 28–38 (2011)
Couceiro, M., Marichal, J.-L.: Axiomatizations of quasi-Lovász extensions of pseudo-Boolean functions. Aequationes Mathematicae 82, 213–231 (2011)
de Campos, L.M., Bolaños, M.J.: Characterization and comparison of Sugeno and Choquet integrals. Fuzzy Sets and Systems 52(1), 61–67 (1992)
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions. Encyclopedia of Mathematics and its Applications, vol. 127. Cambridge University Press, Cambridge (2009)
Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy measures and integrals - Theory and applications. STUDFUZZ, vol. 40. Physica-Verlag, Heidelberg (2000)
Hammer, P., Rudeanu, S.: Boolean methods in operations research and related areas. Springer, Heidelberg (1968)
Lovász, L.: Submodular functions and convexity. In: 11th Int. Symp., Mathematical programming, Bonn 1982, pp. 235–257 (1983)
Mesiar, R., Mesiarová-Zemánková, A.: The ordered modular averages. IEEE Trans. Fuzzy Syst. 19(1), 42–50 (2011)
Singer, I.: Extensions of functions of 0-1 variables and applications to combinatorial optimization. Numer. Funct. Anal. Optimization 7, 23–62 (1984)
Šipoš, J.: Integral with respect to a pre-measure. Mathematica Slovaca 29(2), 141–155 (1979)
Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Research 26(2), 305–321 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Couceiro, M., Marichal, JL. (2012). Quasi-Lovász Extensions and Their Symmetric Counterparts. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-31724-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31723-1
Online ISBN: 978-3-642-31724-8
eBook Packages: Computer ScienceComputer Science (R0)