Abstract
In this paper the notions of α-migrative t-conorms over a fixed t-conorm S 0, and α-migrative uninorms over another fixed uninorm U 0 with the same neutral element are introduced. All continuous t-conorms that are α-migrative over the maximum, the probabilistic sum and the Łukasiewicz t-conorm are characterized. Uninorms belonging to one of the classes \({\cal U}_{\min}\), \({\cal U}_{\max}\), idempotent or representable that are α-migrative over a uninorm U 0 in \( {\cal U}_{\min}\) or \({\cal U}_{\max}\) are also characterized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas. World Scientific, New Jersey (2006)
De Baets, B.: Idempotent uninorms. European Journal of Operational Research 118, 631–642 (1999)
Beliakov, G., Calvo, T.: On migrative means and copulas. In: Proceedings of the AGOP 2009, pp. 107–110. Palma de Mallorca (2009)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practicioners. Springer, Heidelberg (2007)
Bustince, H., De Baets, B., Fernandez, J., Mesiar, R., Montero, J.: A generalization of the migrativity property of aggregation functions. Infromation Sciences 191, 76–85 (2012)
Bustince, H., Montero, J., Mesiar, R.: Migrativity of aggregation functions. Fuzzy Sets and Systems 160, 766–777 (2009)
Calvo, T., De Baets, B., Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120, 385–394 (2001)
Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation operators. New trends and applications. STUDFUZZ, vol. 97. Physica-Verlag, Heidelberg (2002)
Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorms given as ordinal sums. Fuzzy Sets and Systems 161, 149–157 (2010)
Durante, F., Ghiselli Ricci, R.: Supermigrative semi-copulas and triangular norms. Information Sciences 179, 2689–2694 (2009)
Durante, F., Sarkoci, P.: A note on the convex combination of triangular norms. Fuzzy Sets and Systems 159, 77–80 (2008)
Fodor, J., Rudas, I.J.: On continuous triangular norms that are migrative. Fuzzy Sets and Systems 158, 1692–1697 (2007)
Fodor, J., Rudas, I.J.: An extension of the migrative property for triangular norms. Fuzzy Sets and Systems 168, 70–80 (2011)
Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5, 411–427 (1997)
Ghiselli Ricci, R.: Supermigrative aggregation functions. In: Proceedings of the 6th International Summer School on Aggregation Operators, AGOP 2011, Benevento (Italy), pp. 145–150 (July 2011)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions. In: Encyclopedia of Mathematics and its Applications, vol. 127, Cambridge University Press (2009)
Hu, S.K., Li, Z.F.: The structure of continuous uninorms. Fuzzy Sets and Systems 124, 43–52 (2001)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht (2000)
Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets and Systems 128, 209–225 (2002)
Mesiar, R., Bustince, H., Fernandez, J.: On the α-migrativity of semicopulas, quasi-copulas and copulas. Information Sciences 180, 1967–1976 (2010)
Xie, A., Liu, H.: Solutions to the extended migrative functional equation based on continuous triangular norms (2011) (preprint)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J. (2012). On Migrative t-Conorms and Uninorms. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31718-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-31718-7_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31717-0
Online ISBN: 978-3-642-31718-7
eBook Packages: Computer ScienceComputer Science (R0)