Distinct Interpretations of Importance Query Weights in the Vector p − norm Database Model | SpringerLink
Skip to main content

Distinct Interpretations of Importance Query Weights in the Vector p − norm Database Model

  • Conference paper
Advances on Computational Intelligence (IPMU 2012)

Abstract

We propose a model for evaluating soft aggregations of selection conditions with unequal importance in flexible queries to databases, where the importance can have distinct semantics: it can be intended as either relative importance weights, minimum acceptance levels of satisfaction of the conditions, or ideal degrees of satisfaction of the conditions. We define distinct evaluation functions within the unifying framework of the vector p-norm that provides an intuitive geometric interpretation of the query.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bordogna, G., Pasi, G.: Modeling Vagueness in Information Retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 207–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bordogna, G., Psaila, G.: Customizable Flexible Querying for Classical Relational Databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 191–217. Information Science Reference, Hershey (2008)

    Chapter  Google Scholar 

  3. Bordogna, G., Psaila, G.: Soft Aggregation in Flexible Databases Querying based on the Vector p-norm. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17(1), 25–40 (2009)

    Article  MATH  Google Scholar 

  4. Bosc, P., Kacprzyk, J.: Fuzziness in database management systems. Physica-Verlag, Heidelberg (1995)

    MATH  Google Scholar 

  5. Bosc, P., Lietard, L.: Quantified statements and some interpretations for the OWA operators. In: Yager, R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators: Theory and Applications, pp. 241–257. Kluwer, Boston (1997)

    Chapter  Google Scholar 

  6. Bosc, P., Pivert, O.: SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3(1), 1–17 (1995)

    Article  MathSciNet  Google Scholar 

  7. Chomicki, J.: Preference formulas in relational queries. ACM Trans. on Database Systems 28(4), 427–466 (2003)

    Article  Google Scholar 

  8. Dubois, D., Prade, H.: Bipolarity in Flexible Querying. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 174–182. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Dujmović, J.J., Fang, W.Y.: An Empirical Analysis of Assessment Errors for Weights and Andness in LSP Criteria. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 139–150. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Dujmović, J.J., Larsen, H.L.: Generalized conjunction/disjunction. International Journal of Approximate Reasoning 46(3), 423–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galindo, J.: Handbook of Research on Fuzzy Information Processing in Databases. IGI Global (2008)

    Google Scholar 

  12. Kacprzyk, J., Zadrozny, S.: Implementation of OWA operators in fuzzy querying for Microsoft Access. In: Yager, R.R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators: Theory and Applications, pp. 293–306. Kluwer, Boston (1997)

    Chapter  Google Scholar 

  13. Kacprzyk, J., Ziolkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Transactions on Systems, Man and Cybernetics 16, 474–479 (1986)

    Article  Google Scholar 

  14. Kießling, W., Kostler, G.: Preference SQL– Design, Implementation, Experiences. In: Proc. of the 28th VLDB Conf., Hong Kong (2002)

    Google Scholar 

  15. Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proc. of 13th Conf. VLDB, Brighton, GB, pp. 217–225 (1987)

    Google Scholar 

  16. Larsen, H.L.: Importance weighted OWA aggregation of multicriteria queries. In: Proc. of NAFIPS 1999, New York, pp. 740–744 (1999)

    Google Scholar 

  17. Lietard, L., Rocacher, D., Tbahriti, S.E.: Towards an extended SQLf: Bipolar query language with preferences. International Journal of Applied Mathematics and Computer Sciences 4(1), 58–63 (2008)

    Google Scholar 

  18. Petry, F.E.: Fuzzy Databases. Kluwer Academic Pub. (1996)

    Google Scholar 

  19. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  20. Tineo Rodríguez, L.J.: Extending RDBMS for Allowing Fuzzy Quantified Queries. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 407–416. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zadrozny, S., Kacprzyk, J.: Issues in the practical use of the OWA operators in fuzzy querying. J. Intell. Inf. Syst. 33, 307–325 (2009)

    Article  Google Scholar 

  23. Zadrozny, S., Kacprzyk, J.: Bipolar Queries: An Approach and its Various Interpretations. In: Proc. of IFSA-EUSFLAT 2009, pp. 1288–1293 (2009) ISBN: 978-989-95079-6-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bordogna, G., Marcellini, A., Psaila, G. (2012). Distinct Interpretations of Importance Query Weights in the Vector p − norm Database Model. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31709-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31708-8

  • Online ISBN: 978-3-642-31709-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics