Removing Nondeterminism in Constant Height Pushdown Automata | SpringerLink
Skip to main content

Removing Nondeterminism in Constant Height Pushdown Automata

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7386))

Included in the following conference series:

Abstract

We study the descriptional cost of converting constant height nondeterministic pushdown automata into equivalent deterministic devices. We show a double-exponential upper bound for this conversion, together with a super-exponential lower bound.

Supported by the Slovak Grant Agency for Science under contract VEGA 1/0479/12 “Combinatorial Structures and Complexity of Algorithms” and by the Slovak Research and Development Agency under contract APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The Size-Cost of Boolean Operations on Constant Height Deterministic Pushdown Automata. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 80–92. Springer, Heidelberg (2011)

    Google Scholar 

  2. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28, 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 302, 497–498 (2003); Corrigendum, ibid. 302, 497–498 (2003)

    Article  MathSciNet  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  5. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular languages by automata and regular expressions. Inf. and Comput. 208, 385–394 (2010); A preliminary version appears. In: Jto, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 359–370. Springer, Heidelberg (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8, 193–234 (2002)

    MathSciNet  Google Scholar 

  8. Gruska, J.: Quantum Computing. McGraw-Hill (1999)

    Google Scholar 

  9. Gurari, E.M., Ibarra, O.H.: Simple counter machines and number-theoretic problems. J. Comput. Syst. Sci. 19, 145–162 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Holzer, M., Kutrib, M.: Descriptional complexity — an introductory survey. In: Martín-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)

    Google Scholar 

  11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)

    MATH  Google Scholar 

  12. Hromkovič, J.: Algorithmics for Hard Problems, 2nd edn. Springer (2003)

    Google Scholar 

  13. Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars and formal systems. In: IEEE 12th Symp. Switching and Automata Theory, pp. 188–191 (1971)

    Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press (2010)

    Google Scholar 

  17. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  18. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3, 198–200 (1959)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B. (2012). Removing Nondeterminism in Constant Height Pushdown Automata. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31623-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31622-7

  • Online ISBN: 978-3-642-31623-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics