Abstract
We study the descriptional cost of converting constant height nondeterministic pushdown automata into equivalent deterministic devices. We show a double-exponential upper bound for this conversion, together with a super-exponential lower bound.
Supported by the Slovak Grant Agency for Science under contract VEGA 1/0479/12 “Combinatorial Structures and Complexity of Algorithms” and by the Slovak Research and Development Agency under contract APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The Size-Cost of Boolean Operations on Constant Height Deterministic Pushdown Automata. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 80–92. Springer, Heidelberg (2011)
Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28, 114–133 (1981)
Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 302, 497–498 (2003); Corrigendum, ibid. 302, 497–498 (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)
Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular languages by automata and regular expressions. Inf. and Comput. 208, 385–394 (2010); A preliminary version appears. In: Jto, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 359–370. Springer, Heidelberg (2008)
Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)
Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8, 193–234 (2002)
Gruska, J.: Quantum Computing. McGraw-Hill (1999)
Gurari, E.M., Ibarra, O.H.: Simple counter machines and number-theoretic problems. J. Comput. Syst. Sci. 19, 145–162 (1979)
Holzer, M., Kutrib, M.: Descriptional complexity — an introductory survey. In: Martín-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)
Hromkovič, J.: Algorithmics for Hard Problems, 2nd edn. Springer (2003)
Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)
Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)
Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars and formal systems. In: IEEE 12th Symp. Switching and Automata Theory, pp. 188–191 (1971)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press (2010)
Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)
Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3, 198–200 (1959)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B. (2012). Removing Nondeterminism in Constant Height Pushdown Automata. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-31623-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31622-7
Online ISBN: 978-3-642-31623-4
eBook Packages: Computer ScienceComputer Science (R0)