Gene Selection and Classification Rule Generation for Microarray Dataset | SpringerLink
Skip to main content

Gene Selection and Classification Rule Generation for Microarray Dataset

  • Conference paper
Advances in Computing and Information Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 178))

  • 2363 Accesses

Abstract

Microarray is a useful technique for measuring expression data of thousands or more of genes simultaneously. One of challenges in classification of cancer using high-dimensional gene expression data is to select a minimal number of relevant genes which can maximize classification accuracy. Because of the distinct characteristics inherent to specific cancerous gene expression profiles, developing flexible and robust gene identification methods is extremely fundamental. Many gene selection methods as well as their corresponding classifiers have been proposed. In the proposed method, a single gene with high class-discrimination capability is selected and classification rules are generated for cancer based on gene expression profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aerman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 1, 6745–6750 (1999)

    Google Scholar 

  2. DeRisi, J., et al.: Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14(4), 457–460 (1996)

    Article  Google Scholar 

  3. Muralidhar, K., Sarathy, R.: Security of random data perturbation methods. ACM Trans. Database Syst. 24(4), 487–493 (1999)

    Article  Google Scholar 

  4. Petrov, A., Shams, S.: Microarray image processing and quality control. VLSI Signal Processing 38(3), 211–226 (2004)

    Article  Google Scholar 

  5. Su, Y., Murali, T.M., Pavlovic, V., Schaffer, M., Kasif, S.: RankGene: identification of diagnostic genes based on expression data. Bioinformatics 19, 1578–1579 (2003)

    Article  Google Scholar 

  6. Li, L., Weinberg, R.C., Darden, T.A., Pedersen, L.G.: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001)

    Article  Google Scholar 

  7. Zhang, H., Yu, C.Y., Singer, B., Xiong, M.: Recursive partitioning for tumor classification with gene expression microarray data. PNAS 98, 6730–6735 (2001)

    Article  Google Scholar 

  8. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. J. Am. Statistical Assoc. 97(457), 77–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, X., Gotoh, O.: Microarray-Based Cancer Prediction Using Soft Computing Approach. Cancer Informatics 7, 123–139 (2009)

    Google Scholar 

  10. Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering (Technical Report MSR-TR-2000-65), Microsoft Research, Redmond, WA (2000)

    Google Scholar 

  11. Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.: Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: 4th Workshop on Data Mining in Bioinformatics (2004)

    Google Scholar 

  12. Peterson, I.: Fuzzy Sets. Science News 144, 55 (1993)

    Article  Google Scholar 

  13. http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi

  14. http://www-genome.wi.mit.edu/mpr/lung

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kumar Pati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pati, S.K., Das, A.K. (2013). Gene Selection and Classification Rule Generation for Microarray Dataset. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31600-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31600-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31599-2

  • Online ISBN: 978-3-642-31600-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics