Rough Set Based Classification on Electronic Nose Data for Black Tea Application | SpringerLink
Skip to main content

Rough Set Based Classification on Electronic Nose Data for Black Tea Application

  • Conference paper
Advances in Computing and Information Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 178))

Abstract

The responses generated by a gas sensor array are difficult to classify due to their inherent imprecision, uncertainty and the procedures of computational intelligence are appropriate to deal with such imperfect knowledge. In recent years, rough set theory has attracted more attention of many researchers even though it was proposed in the early 1980’s by Z. Pawlak. The rough set based analysis makes it very convenient for classification of data especially with huge volume of information, as the method is very efficient to find the optimal subset of attributes. In this paper, the rough set based algorithm has been applied to generate representative rules using the datasets obtained from a gas sensor array in an electronic nose instrument, capable of sensing aroma of black tea samples and these rules are used to classify the black tea quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peris, M., Escuder-Gilabert, L.: A 21st century technique for food control: Electronic noses. Analytica Chimica Acta 638(1), 1–15 (2009)

    Article  Google Scholar 

  2. Guo, D., Zhang, D., Li, N., Zhang, L., Yang, J.: A novel breath analysis system based on electronic olfaction. IEEE Transactions on Biomedical Engineering 57(11), art. no. 5523940, 2753–2763 (2010)

    Article  Google Scholar 

  3. Capua, E., Cao, R., Sukenik, C.N., Naaman, R.: Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions. Sensors and Actuators, B: Chemical 140(1), 122–127 (2009)

    Article  Google Scholar 

  4. Dutta, R., Hines, E.L., Gardner, J.W., Kashwan, K.R., Bhuyan, M.: Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach. Sens. Actuators B: Chem. 94, 228–237 (2003)

    Article  Google Scholar 

  5. Bhattacharyya, N., Bandyopadhyay, R., Bhyan, M., Ghosh, A., Mudi, R.K.: Correlation of multi-sensor array data with ‘tasters’ panel evaluation for objective assessment of black tea flavour. In: Proc. ISOEN, Barcelona, Spain (2005)

    Google Scholar 

  6. Bhattacharyya, N., Bandyopadhyay, R., Bhuyan, M., Tudu, B., Ghosh, D., Jana, A.: Electronic nose for black tea classification and correlation of measurements with “Tea Taster” marks. IEEE Trans. Instrum. Meas. 57, 1313–1321 (2008)

    Article  Google Scholar 

  7. Bhattacharyya, N., Seth, S., Tudu, B., Tamuly, P., Jana, A., Ghosh, D., Bandyopadhyay, R., Bhuyan, M., Sabhapandit, S.: Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens. Actuators B, Chem. 122(2), 627–634 (2007)

    Article  Google Scholar 

  8. Tudu, B., Metla, A., Das, B., Bhattacharyya, N., Jana, A., Ghosh, D., Bandyopadhyay, R.: Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An Incremental Fuzzy Approach. IEEE Trans. Instrum. Meas. 58(9), 3069–3078 (2009)

    Article  Google Scholar 

  9. Kermani, B.G., Schiffman, S.S., Nagle, H.T.: A novel method for reducing the dimensionality in a sensor array. IEEE Trans. Instrum. Meas. 47(3), 728–741 (1998)

    Article  Google Scholar 

  10. Elkov, T., Martensson, P., Lundstrom, I.: Selection of variables for interpreting multivariate gas sensor data. Anal. Chim. Acta 381, 221–232 (1999)

    Article  Google Scholar 

  11. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernetics and Systems: An Int. J. 29, 661–688 (1998)

    Article  MATH  Google Scholar 

  12. Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Komorowski, J., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial, Rough Fuzzy Hybridization, pp. 3–98. Springer (1999)

    Google Scholar 

  14. Nguyen, S.H., Nguyen, H.S.: Pattern extraction from data. Fundamental Informaticae 34, 129–144 (1998)

    MATH  Google Scholar 

  15. Hussain, F., Liu, H., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data Min. Knowl. Dis. 6, 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  16. Dai, J.-H., Li, Y.-X.: Study on discretization based on rough set theory. In: Proc. of the First International Conference on Machine Learning and Cybernetics, Beijing, pp. 1371–1373 (November 2002)

    Google Scholar 

  17. Yang, P., Li, J., Huang, Y.: An attribute reduction algorithm by rough set based on binary discernibility matrix. In: Proc. of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 276–280 (2008)

    Google Scholar 

  18. Li, J., Pattaraintakorn, P., Cercone, N.: Rule Evaluations, Attributes, and Rough Sets: Extension and a Case Study. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 152–171. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Kovacs, E., Ignat, I.: Reduct equivalent rule induction based on rough set theory. In: Proc. IEEE 3rd International Conference on Intelligent Computer Communication and Processing, pp. 9–15 (2007)

    Google Scholar 

  20. Bag, A.K., Tudu, B., Roy, J., Bhattacharyya, N., Bandyopadhyay, R.: Optimization of sensor array in electronic nose: a rough set-based approach. IEEE Sensors Journal 11, 3000–3008 (2011)

    Article  Google Scholar 

  21. Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intel. 32(3), 569–575 (2010)

    Article  Google Scholar 

  22. Singh, S., Hines, E.L., Gardner, J.W.: Fuzzy neural computing of coffee and tainted-water data from an electronic nose. Sens. Actuators B 30(3), 185–190 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Bag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bag, A.K., Tudu, B., Bhattacharyya, N., Bandyopadhyay, R. (2013). Rough Set Based Classification on Electronic Nose Data for Black Tea Application. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31600-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31600-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31599-2

  • Online ISBN: 978-3-642-31600-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics