PSO Assisted NURB Neural Network Identification | SpringerLink
Skip to main content

PSO Assisted NURB Neural Network Identification

  • Conference paper
Intelligent Computing Technology (ICIC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7389))

Included in the following conference series:

  • 2676 Accesses

Abstract

A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bai, E.W., Fu, M.Y.: A Blind Approach to Hammerstein Model Identification. IEEE Transactions on Signal Processing 50(7), 1610–1619 (2002)

    Article  Google Scholar 

  2. Billings, S.A., Fakhouri, S.Y.: Nonlinear System Identification Using the Hammerstein Model. International Journal of Systems Science 10, 567–578 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Boor: A Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  4. Chaoui, F.Z., Giri, F., Rochdi, Y., Haloua, M., Naitali, A.: System Identification Based Hammerstein Model. International Journal of Control 78(6), 430–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farin, G.: Curves and Surfaces for Comnputer-aided Geometric Design: a Practical Guide. Academic Press, Boston (1994)

    Google Scholar 

  6. Goethals, I., Pelckmans, K., Suykens, J.A.K., Moor, B.D.: Identification of MIMO Hammerstein Models Using Least Squares Support Vector Machines. Automatica 41, 1263–1272 (2005)

    Article  MATH  Google Scholar 

  7. Greblicki, W.: Stochastic Approximation in Nonparametric Identification of Hammerstein Systems. IEEE Transactions on Automatic Control 47(11), 1800–1810 (2002)

    Article  MathSciNet  Google Scholar 

  8. Greblicki, W., Pawlak, M.: Identification of discrete Hammerstein Systems Using Kernel Regression Estimate. IEEE Transactions on Automatic Control AC-31(1), 74–77 (1986)

    Article  Google Scholar 

  9. Guru, S.M., Halgamuge, S.K., Fernando, S.: Particle Swarm Optimisers for Cluster Formation in Wireless Sensor Networks. In: Proc. 2005 Int. Conf. Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, pp. 319–324 (2005)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. of 1995 IEEE Int. Conf. Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)

    Google Scholar 

  12. Lang, Z.Q.: A Nonparametric Polynomial Identification Algorithm for the Hammerstein System. IEEE Transactions on Automatic Control 42, 1435–1441 (1997)

    Article  MATH  Google Scholar 

  13. van der Merwe, D.W., Engelbrecht, A.P.: Data Clustering Using Particle Swarm Optimization. In: Proc. CEC 2003, Cabberra, Australia, pp. 215–220 (2003)

    Google Scholar 

  14. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Trans. Evolutionary Computation 8, 240–255 (2004)

    Article  Google Scholar 

  15. Stoica, P., Söderström, T.: Instrumental Variable Methods for Identification of Hammerstein Systems. International Journal of Control 35, 459–476 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verhaegen, M., Westwick, D.: Identifying Mimo Hammerstein Systems in the Context of Subspace Model Identification. International Journal of Control 63(2), 331–349 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, X., Chen, S. (2012). PSO Assisted NURB Neural Network Identification. In: Huang, DS., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds) Intelligent Computing Technology. ICIC 2012. Lecture Notes in Computer Science, vol 7389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31588-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31588-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31587-9

  • Online ISBN: 978-3-642-31588-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics