Abstract
A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bai, E.W., Fu, M.Y.: A Blind Approach to Hammerstein Model Identification. IEEE Transactions on Signal Processing 50(7), 1610–1619 (2002)
Billings, S.A., Fakhouri, S.Y.: Nonlinear System Identification Using the Hammerstein Model. International Journal of Systems Science 10, 567–578 (1979)
de Boor: A Practical Guide to Splines. Springer, New York (1978)
Chaoui, F.Z., Giri, F., Rochdi, Y., Haloua, M., Naitali, A.: System Identification Based Hammerstein Model. International Journal of Control 78(6), 430–442 (2005)
Farin, G.: Curves and Surfaces for Comnputer-aided Geometric Design: a Practical Guide. Academic Press, Boston (1994)
Goethals, I., Pelckmans, K., Suykens, J.A.K., Moor, B.D.: Identification of MIMO Hammerstein Models Using Least Squares Support Vector Machines. Automatica 41, 1263–1272 (2005)
Greblicki, W.: Stochastic Approximation in Nonparametric Identification of Hammerstein Systems. IEEE Transactions on Automatic Control 47(11), 1800–1810 (2002)
Greblicki, W., Pawlak, M.: Identification of discrete Hammerstein Systems Using Kernel Regression Estimate. IEEE Transactions on Automatic Control AC-31(1), 74–77 (1986)
Guru, S.M., Halgamuge, S.K., Fernando, S.: Particle Swarm Optimisers for Cluster Formation in Wireless Sensor Networks. In: Proc. 2005 Int. Conf. Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, pp. 319–324 (2005)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. of 1995 IEEE Int. Conf. Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
Lang, Z.Q.: A Nonparametric Polynomial Identification Algorithm for the Hammerstein System. IEEE Transactions on Automatic Control 42, 1435–1441 (1997)
van der Merwe, D.W., Engelbrecht, A.P.: Data Clustering Using Particle Swarm Optimization. In: Proc. CEC 2003, Cabberra, Australia, pp. 215–220 (2003)
Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Trans. Evolutionary Computation 8, 240–255 (2004)
Stoica, P., Söderström, T.: Instrumental Variable Methods for Identification of Hammerstein Systems. International Journal of Control 35, 459–476 (1982)
Verhaegen, M., Westwick, D.: Identifying Mimo Hammerstein Systems in the Context of Subspace Model Identification. International Journal of Control 63(2), 331–349 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hong, X., Chen, S. (2012). PSO Assisted NURB Neural Network Identification. In: Huang, DS., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds) Intelligent Computing Technology. ICIC 2012. Lecture Notes in Computer Science, vol 7389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31588-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-31588-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31587-9
Online ISBN: 978-3-642-31588-6
eBook Packages: Computer ScienceComputer Science (R0)