Abstract
Predicted Mean Vote (PMV) is the most widely-used index for evaluating the thermal comfort in buildings. But, this index is calculated through complicated iterations so that it is not suitable for real-time applications. To avoid complicated iterative calculation, this paper presents a prediction model for this index. The proposed model utilizes type-2 fuzzy neural network to approximate the input-output characteristic of the PMV model. To tune the parameters of this type-2 fuzzy neural prediction model, a hybrid algorithm which is a combination of the least square estimate (LSE) method and the back-propagation (BP) algorithm is provided. Finally, simulations are given to verify the effectiveness of the proposed prediction model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Djongyang, N., Tchinda, R., Njomo, D.: Thermal Comfort: A Review Paper. Renewable and Sustainable Energy Reviews 14, 2626–2640 (2010)
Chen, K., Rys, M.J., Lee, E.S.: Modeling of Thermal Comfort in Air Conditioned Rooms by Fuzzy Regression Analysis. Mathematical and Computer Modelling 43, 809–819 (2006)
Chen, K., Jiao, Y., Lee, E.S.: Fuzzy Adaptive Networks in Thermal Comfort. Applied Mathematics Letters 19, 420–426 (2006)
Fanger, P.O.: Thermal Comfort: Analysis and Applications in Environmental Engineering. McGraw-Hill, New York (1970)
Sherman, M.: A Simplified Model of Thermal Comfort. Energy Buildings 8, 37–50 (1985)
Federspiel, C.C., Asada, H.: User-Adaptable Comfort Control for HVAC Systems. Trans. ASME 116, 474–486 (1994)
Atthajariyakul, S., Leephakpreeda, T.: Neural Computing Thermal Comfort Index for HVAC Systems. Energy Conversion and Management 46, 2553–2565 (2005)
Liang, J., Du, R.: Thermal Comfort Control Based on Neural Network for HVAC Application. In: Proceedings of the 2005 IEEE Conference on Control Applications, pp. 819–824. IEEE Press, New York (2005)
Ma, B., Shu, J., Wang, Y.: Experimental Design and the GA-BP Prediction of Human Thermal Comfort Index. In: Proceedings of the 2011 Seventh International Conference on Natural Computation, pp. 771–775 (2011)
Homod, R.Z., Mohamed Sahari, K.S., Almurib, H.A.F., Nagi, F.H.: RLF and TS Fuzzy Model Identification of Indoor Thermal Comfort Based on PMV/PPD. Building and Environment 49, 141–153 (2012)
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall (2001)
Mendel, J.M.: Computing with Words and its Relationships with Fuzzistics. Information Sciences 177, 988–1006 (2007)
Liu, F., Mendel, J.M.: Encoding Words into Interval Type-2 Fuzzy Sets Using an Interval Approach. IEEE Trans. Fuzzy Syst. 16, 1503–1521 (2008)
Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)
Juang, C.F., Hsu, C.H.: Reinforcement Ant Optimized Fuzzy Controller for Mobile Robot Wall Following Control. IEEE Trans. Ind. Electron. 56, 3931–3940 (2009)
Begian, M., Melek, W., Mendel, J.M.: Stability Analysis of Type-2 Fuzzy Systems. In: Proceedings of 2008 IEEE International Conference on Fuzzy Systems, pp. 947–953. IEEE Press, New York (2008)
Li, C., Yi, J., Wang, T.: Encoding Prior Knowledge into Data Driven Design of Interval Type-2 Fuzzy Logic Systems. International Journal of Innovative Computing, Information and Control 7(3), 1133–1144 (2011)
Li, C., Yi, J.: SIRMs Based Interval Type-2 Fuzzy Inference Systems: Properties and Application. International Journal of Innovative Computing, Information and Control 6(9), 4019–4028 (2010)
Li, C., Yi, J., Zhao, D.: Interval Type-2 Fuzzy Neural Network Controller (IT2FNNC) and its Application to a Coupled-Tank Liquid-Level Control System. In: Proceedings of 3rd International Conference on Innovative Computing Information and Control, Dalian, Liaoning, China, pp. 508–511. IEEE Press, New York (2008)
Li, C., Yi, J., Yu, Y., Zhao, D.: Inverse Control of Cable-Driven Parallel Mechanism using Type-2 Fuzzy Neural Network. Acta Automatica Sinica 36(3), 459–464 (2010)
Lin, F.-J., Shieh, P.-H., Hung, Y.-C.: An Intelligent Control for Linear Ultrasonic Motor Using Interval Type-2 Fuzzy Neural Network. IET Electr. Power Appl. 2(1), 32–41 (2008)
Abiyev, R.H., Kaynak, O.: Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants. IEEE Trans. Ind. Electron. 57(12), 4147–4159 (2010)
Nelles, O.: Nonlinear System Identification. Springer, Berlin (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, C., Yi, J., Wang, M., Zhang, G. (2012). Prediction of Thermal Comfort Index Using Type-2 Fuzzy Neural Network. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds) Advances in Brain Inspired Cognitive Systems. BICS 2012. Lecture Notes in Computer Science(), vol 7366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31561-9_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-31561-9_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31560-2
Online ISBN: 978-3-642-31561-9
eBook Packages: Computer ScienceComputer Science (R0)