Prediction of Thermal Comfort Index Using Type-2 Fuzzy Neural Network | SpringerLink
Skip to main content

Prediction of Thermal Comfort Index Using Type-2 Fuzzy Neural Network

  • Conference paper
Advances in Brain Inspired Cognitive Systems (BICS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7366))

Included in the following conference series:

Abstract

Predicted Mean Vote (PMV) is the most widely-used index for evaluating the thermal comfort in buildings. But, this index is calculated through complicated iterations so that it is not suitable for real-time applications. To avoid complicated iterative calculation, this paper presents a prediction model for this index. The proposed model utilizes type-2 fuzzy neural network to approximate the input-output characteristic of the PMV model. To tune the parameters of this type-2 fuzzy neural prediction model, a hybrid algorithm which is a combination of the least square estimate (LSE) method and the back-propagation (BP) algorithm is provided. Finally, simulations are given to verify the effectiveness of the proposed prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Djongyang, N., Tchinda, R., Njomo, D.: Thermal Comfort: A Review Paper. Renewable and Sustainable Energy Reviews 14, 2626–2640 (2010)

    Article  Google Scholar 

  2. Chen, K., Rys, M.J., Lee, E.S.: Modeling of Thermal Comfort in Air Conditioned Rooms by Fuzzy Regression Analysis. Mathematical and Computer Modelling 43, 809–819 (2006)

    Article  MATH  Google Scholar 

  3. Chen, K., Jiao, Y., Lee, E.S.: Fuzzy Adaptive Networks in Thermal Comfort. Applied Mathematics Letters 19, 420–426 (2006)

    Article  Google Scholar 

  4. Fanger, P.O.: Thermal Comfort: Analysis and Applications in Environmental Engineering. McGraw-Hill, New York (1970)

    Google Scholar 

  5. Sherman, M.: A Simplified Model of Thermal Comfort. Energy Buildings 8, 37–50 (1985)

    Article  Google Scholar 

  6. Federspiel, C.C., Asada, H.: User-Adaptable Comfort Control for HVAC Systems. Trans. ASME 116, 474–486 (1994)

    Article  MATH  Google Scholar 

  7. Atthajariyakul, S., Leephakpreeda, T.: Neural Computing Thermal Comfort Index for HVAC Systems. Energy Conversion and Management 46, 2553–2565 (2005)

    Article  Google Scholar 

  8. Liang, J., Du, R.: Thermal Comfort Control Based on Neural Network for HVAC Application. In: Proceedings of the 2005 IEEE Conference on Control Applications, pp. 819–824. IEEE Press, New York (2005)

    Chapter  Google Scholar 

  9. Ma, B., Shu, J., Wang, Y.: Experimental Design and the GA-BP Prediction of Human Thermal Comfort Index. In: Proceedings of the 2011 Seventh International Conference on Natural Computation, pp. 771–775 (2011)

    Google Scholar 

  10. Homod, R.Z., Mohamed Sahari, K.S., Almurib, H.A.F., Nagi, F.H.: RLF and TS Fuzzy Model Identification of Indoor Thermal Comfort Based on PMV/PPD. Building and Environment 49, 141–153 (2012)

    Article  Google Scholar 

  11. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall (2001)

    Google Scholar 

  12. Mendel, J.M.: Computing with Words and its Relationships with Fuzzistics. Information Sciences 177, 988–1006 (2007)

    Article  MathSciNet  Google Scholar 

  13. Liu, F., Mendel, J.M.: Encoding Words into Interval Type-2 Fuzzy Sets Using an Interval Approach. IEEE Trans. Fuzzy Syst. 16, 1503–1521 (2008)

    Article  Google Scholar 

  14. Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)

    Article  Google Scholar 

  15. Juang, C.F., Hsu, C.H.: Reinforcement Ant Optimized Fuzzy Controller for Mobile Robot Wall Following Control. IEEE Trans. Ind. Electron. 56, 3931–3940 (2009)

    Article  Google Scholar 

  16. Begian, M., Melek, W., Mendel, J.M.: Stability Analysis of Type-2 Fuzzy Systems. In: Proceedings of 2008 IEEE International Conference on Fuzzy Systems, pp. 947–953. IEEE Press, New York (2008)

    Google Scholar 

  17. Li, C., Yi, J., Wang, T.: Encoding Prior Knowledge into Data Driven Design of Interval Type-2 Fuzzy Logic Systems. International Journal of Innovative Computing, Information and Control 7(3), 1133–1144 (2011)

    Google Scholar 

  18. Li, C., Yi, J.: SIRMs Based Interval Type-2 Fuzzy Inference Systems: Properties and Application. International Journal of Innovative Computing, Information and Control 6(9), 4019–4028 (2010)

    Google Scholar 

  19. Li, C., Yi, J., Zhao, D.: Interval Type-2 Fuzzy Neural Network Controller (IT2FNNC) and its Application to a Coupled-Tank Liquid-Level Control System. In: Proceedings of 3rd International Conference on Innovative Computing Information and Control, Dalian, Liaoning, China, pp. 508–511. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  20. Li, C., Yi, J., Yu, Y., Zhao, D.: Inverse Control of Cable-Driven Parallel Mechanism using Type-2 Fuzzy Neural Network. Acta Automatica Sinica 36(3), 459–464 (2010)

    Article  Google Scholar 

  21. Lin, F.-J., Shieh, P.-H., Hung, Y.-C.: An Intelligent Control for Linear Ultrasonic Motor Using Interval Type-2 Fuzzy Neural Network. IET Electr. Power Appl. 2(1), 32–41 (2008)

    Article  Google Scholar 

  22. Abiyev, R.H., Kaynak, O.: Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants. IEEE Trans. Ind. Electron. 57(12), 4147–4159 (2010)

    Article  Google Scholar 

  23. Nelles, O.: Nonlinear System Identification. Springer, Berlin (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, C., Yi, J., Wang, M., Zhang, G. (2012). Prediction of Thermal Comfort Index Using Type-2 Fuzzy Neural Network. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds) Advances in Brain Inspired Cognitive Systems. BICS 2012. Lecture Notes in Computer Science(), vol 7366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31561-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31561-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31560-2

  • Online ISBN: 978-3-642-31561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics