Abstract
We investigate parallel algorithms for the solution of the shallow-water equation in a space-time framework. For periodic solutions, the discretized problem can be written as a large cyclic non-linear system of equations. This system of equations is solved with a Newton iteration which uses two levels of preconditioned GMRES solvers. The parallel performance of this algorithm is illustrated on a number of numerical experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)
Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)
Hiltebrand, A.: Parallel solution of time-periodic problems. Master thesis, ETH Zurich, Institute of Fluid Dynamics (March 2011)
Kevorkian, J.: Partial Differential Equations: Analytical Solution Techniques, 2nd edn. Springer, New York (2000)
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)
Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Math. Acad. Sci. Paris 332(7), 661–668 (2001)
Obrist, D., Henniger, R., Arbenz, P.: Parallelization of the time integration for time-periodic flow problems. PAMM 10(1), 567–568 (2010)
Pawlowski, R.P., Shadid, J.N., Simonis, J.P., Walker, H.F.: Globalization techniques for Newton–Krylov methods and applications to the fully coupled solution of the Navier–Stokes equations. SIAM Rev. 48(4), 700–721 (2006)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Stoll, M., Wathen, A.: All-at-once solution of time-dependent PDE-constrained optimization problems. Technical Report 10/47, Oxford Centre for Collaborative Applied Mathematics, Oxford, England (2010)
The Trilinos Project Home Page, http://trilinos.sandia.gov/
Vreugdenhil, C.B.: Numerical Methods for Shallow-Water Flow. Kluwer, Dordrecht (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arbenz, P., Hiltebrand, A., Obrist, D. (2012). A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-31500-8_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31499-5
Online ISBN: 978-3-642-31500-8
eBook Packages: Computer ScienceComputer Science (R0)