A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation | SpringerLink
Skip to main content

A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7204))

Abstract

We investigate parallel algorithms for the solution of the shallow-water equation in a space-time framework. For periodic solutions, the discretized problem can be written as a large cyclic non-linear system of equations. This system of equations is solved with a Newton iteration which uses two levels of preconditioned GMRES solvers. The parallel performance of this algorithm is illustrated on a number of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)

    Article  MATH  Google Scholar 

  2. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hiltebrand, A.: Parallel solution of time-periodic problems. Master thesis, ETH Zurich, Institute of Fluid Dynamics (March 2011)

    Google Scholar 

  4. Kevorkian, J.: Partial Differential Equations: Analytical Solution Techniques, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  5. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  6. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Math. Acad. Sci. Paris 332(7), 661–668 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Obrist, D., Henniger, R., Arbenz, P.: Parallelization of the time integration for time-periodic flow problems. PAMM 10(1), 567–568 (2010)

    Article  Google Scholar 

  8. Pawlowski, R.P., Shadid, J.N., Simonis, J.P., Walker, H.F.: Globalization techniques for Newton–Krylov methods and applications to the fully coupled solution of the Navier–Stokes equations. SIAM Rev. 48(4), 700–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  10. Stoll, M., Wathen, A.: All-at-once solution of time-dependent PDE-constrained optimization problems. Technical Report 10/47, Oxford Centre for Collaborative Applied Mathematics, Oxford, England (2010)

    Google Scholar 

  11. The Trilinos Project Home Page, http://trilinos.sandia.gov/

  12. Vreugdenhil, C.B.: Numerical Methods for Shallow-Water Flow. Kluwer, Dordrecht (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbenz, P., Hiltebrand, A., Obrist, D. (2012). A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics