Electricity Consumption Time Series Profiling: A Data Mining Application in Energy Industry | SpringerLink
Skip to main content

Electricity Consumption Time Series Profiling: A Data Mining Application in Energy Industry

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7377))

Included in the following conference series:

Abstract

The ongoing deployment of Automated Meter Reading systems (AMR) in the European electricity industry has created new challenges for electricity utilities in terms of how to fully utilise the wealth of timely measured AMR data, not only to enhance day-to-day operations, but also to facilitate demand response programs. In this study we investigate a visual data mining approach for decision-making support with respect to pricing differentiation or designing demand response tariffs. We cluster the customers in our sample according to the customers’ actual consumption behaviour in 2009, and profile their electricity consumption with a focus on the comparison of two sets of seasonal and time based variables. The results suggest that such an analytical approach can visualise deviations and granular information in consumption patterns, allowing the electricity companies to gain better knowledge about the customers’ electricity usage. The investigated electricity consumption time series profiling approach will add empirical understanding of the problem domain to the related research community and to the future practice of the energy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdel-Aal, R.E.: Short Term Hourly Load Forecasting Using Abductive Networks. IEEE Transactions on Power Systems 19(1), 164–173 (2004)

    Article  Google Scholar 

  • Back, B., Toivonen, J., Vanharanta, H., Visa, A.: Comparing numerical data and text information from annual reports using self-organizing maps. International Journal of Accounting Information Systems 2(4), 249–269 (2001)

    Article  Google Scholar 

  • Baragoin, C., Andersen, C., Bayerl, S., Bent, G., Lee, J., Schommer, C.: Mining Your Own Business in Retail Using DB2 Intelligent Miner for Data. IBM Redbooks (2001)

    Google Scholar 

  • Berry, M.J.A., Linoff, G.: Data mining techniques: for marketing, sales, and customer relationship management. Wiley Computer Publishing (2004)

    Google Scholar 

  • Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Avon (1995)

    Google Scholar 

  • CEER Advice on the take-off of a demand response electricity market with smart meters, Ref: C11-RMF-36-03 (December 2011)

    Google Scholar 

  • Charytoniuk, W., Chen, M.-S.: Very Short Term Load Forecasting Using Artificial Neural Networks. IEEE Transactions on Power Systems 15(1), 363–368 (2000)

    Article  Google Scholar 

  • Collica, R.S.: CRM Segmentation and Clustering Using SAS Enterprise Miner. SAS Publishing (2007)

    Google Scholar 

  • Cotti, M., Millan, R.: Cervantes project and ’meters and more’: the state of the art of smart metering implementation in Europe. In: Proceeding of 21st International Conference on Electricity Distribution (CIRED 2011), Frankfurt, Germany, paper 0829 (2011)

    Google Scholar 

  • Deboeck, G., Kohonen, T.: Visual explorations in finance using self-organizing maps. Springer, Berlin (1998)

    Google Scholar 

  • Eklund, T., Back, B., Vanharanta, H., Visa, A.: Using the self-organizing map as a visualization tool in financial benchmarking. Information Visualization 2(3), 171–181 (2003)

    Article  Google Scholar 

  • Garpetun, L.: Experiences from operations after a full-scale smart metering rollout regarding availability and reliability. In: Proceedings of the 21st International Conference on Electricity Distribution (CIRED 2011), Frankfurt, Germany, paper 0415 (2011)

    Google Scholar 

  • Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (2000)

    Google Scholar 

  • Kaski, S., Kangas, J., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers 1981-1997. Neural Computing Surveys 1, 102–350 (1998)

    Google Scholar 

  • Keppo, J., Räsänen, M.: Pricing of electricity tariffs in competitive markets. Energy Economics 21, 213–223 (1999)

    Article  Google Scholar 

  • Kohonen, T.: Self-organizing maps. Springer Series in Information Sciences, vol. 4, pp. 22–25. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  • Kohonen, T.: Self-organizing maps, 3rd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  • Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM PAK: The self-organizing map program package. Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science (1996)

    Google Scholar 

  • Lee, S.-C., Gu, J.-C., Suh, Y.-H.: A Comparative Analysis of Clustering Methodology and Application for Market Segmentation: K-Means, SOM and a Two-Level SOM. Foundations of Intelligent Systems, 435–444 (2006)

    Google Scholar 

  • Lendasse, A., Lee, J., Wertz, V., Verleysen, M.: Forecasting electricity consumption using nonliner projection and self-organizing maps. Neurocomputing 48, 299–311 (2002)

    Article  MATH  Google Scholar 

  • Liu, H., Eklund, T., Back, B., Vanharanta, H.: Visual Data Mining: Using Self-Organizing Maps for Electricity Distribution Regulation. In: Ariwa, E., El-Qawasmeh, E. (eds.) DEIS 2011. CCIS, vol. 194, pp. 631–645. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Mutanen, A., Repo, S., Järventausta, P.: AMR in distribution state estimation. In: Proceedings of Nordic Distribution and Asset Management Conference, Bergen, Norway (2008)

    Google Scholar 

  • Mutanen, A., Repo, S., Järventausta, P.: Customer Classification and Load Profiling Based on AMR Measurements. In: Proceedings of the 21st International Conference on Electricity Distribution (CIRED 2011), Frankfurt, Germany, paper 0277 (2010)

    Google Scholar 

  • Nababhushana, T.N., Veeramanju, K.T., Shivanna: Coherency identification using growing self organizing feature maps (power system stability). In: IEEE Proceedings of EMPD 1998. International Conference on Energy Management and Power Delivery, vol. 1, pp. 113–116 (1998)

    Google Scholar 

  • Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neural Computing Surveys 3, 1–156 (2002)

    Google Scholar 

  • Rehtanz, C.: Visualisation of voltage stability in large electric power systems. In: IEEE Proceedings Generation, Transmission and Distribution, vol. 146, pp. 573–576 (1999)

    Google Scholar 

  • Riqueline, J., Martinez, J.L., Gomez, A., Goma, D.C.: Possibilities of artificial neural networks in short-term load forecasting. In: Proceedings of the IASTED International Conference Power and Energy Systems, pp. 165–170. IASTED/ACTA Press, Anaheim (2000)

    Google Scholar 

  • Sarlin, P., Peltonen, T.: Mapping the State of Financial Stability. ECB WP No. 1382/2011 (2011)

    Google Scholar 

  • Samarasinghe, S.: Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. CRC Press (2007)

    Google Scholar 

  • Valtonen, P., Honkapuro, S., Partanen, J.: Improving Short-Term Load Forecasting Accuracy by Utilizing Smart Metering. In: Proceedings of the 20 th International Conference on Electricity Distribution (CIRED 2010), Lyon, France, paper 0056 (2010a)

    Google Scholar 

  • Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  • Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)

    MathSciNet  Google Scholar 

  • Wiskott, L., Sejnowski, T.: Constrained optimization for neural map formation: A unifying framework for weight growth and normalization. Neural Computation 10(3), 671–716 (1998)

    Article  Google Scholar 

  • Yao, Z., Holmbom, A.H., Eklund, T., Back, B.: Combining Unsupervised and Supervised Data Mining Techniques for Conducting Customer Portfolio Analysis. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 292–307. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Yao, Z., Eklund, T., Back, B. (2012). Electricity Consumption Time Series Profiling: A Data Mining Application in Energy Industry. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2012. Lecture Notes in Computer Science(), vol 7377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31488-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31488-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31487-2

  • Online ISBN: 978-3-642-31488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics