An Integrated Pruning Criterion for Ensemble Learning Based on Classification Accuracy and Diversity | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 172))

Abstract

Ensemble pruning is an important issue in the field of ensemble learning. Diversity is a key criterion to determine how the pruning process has been done and measure what result has been derived. However, there is few formal definitions of diversity yet. Hence, three important factors that should be further considered while designing a pruning criterion is presented, and then an effective definition of diversity is proposed. The experimental results have validated that the given pruning criterion could single out the subset of classifiers that show better performance in the process of hill-climbing search, compared with other definitions of diversity and other criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Shipp, C., Kuncheva, L.: Relationships between combination methods and measures of diversity in combing classifiers. Information Fusion 3(2), 135–148 (2002)

    Article  Google Scholar 

  3. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning (ICML 1996), pp. 148–156 (1996)

    Google Scholar 

  6. Ho, T.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  7. Caruana, R., Niculescu-Miil, A., Crew, G., et al.: Ensemble Selection from Libraries of Models. In: Proceedings of the Twenty-First International Conference (ICML 2004), pp. 18–25 (2004)

    Google Scholar 

  8. Martinez-Munoz, G., Suarez, A.: Using boosting to prune bagging ensembles. Pattern Recognition Letters 28, 156–165 (2007)

    Article  Google Scholar 

  9. Tsoumakas, G., Partalas, I., Vlahavas, I.: An Ensemble Pruning Primer. In: Okun, O., Valentini, G. (eds.) Applications of Supervised and Unsupervised Ensemble Methods. SCI, vol. 245, pp. 1–13. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Martinez-Munoz, G., Suarez, A.: Aggregation ordering in bagging. In: Proceedings of the 2004 International Conference on Artificial Intelligence and Applications, pp. 258–263 (2004)

    Google Scholar 

  11. Yang, Y., Korb, K.B., Ting, K.M., Webb, G.I.: Ensemble Selection for SuperParent-One-Dependence Estimators. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 102–112. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Banfield, R., Hall, L., Bowyer, K., et al.: Ensemble diversity measures and their application to thinning. Information Fusion 6(1), 49–62 (2005)

    Article  Google Scholar 

  13. Partalas, I., Tsoumakas, G., Vlahavas, I.: Focused ensemble selection: a diversity-Based method for greedy ensemble selection. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 117–121 (2008)

    Google Scholar 

  14. Caruana, R., Niculescu-Mizil, A.: Data mining in metric space: an empirical analysis of supervised learning performance criteria. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), pp. 69–78 (2004)

    Google Scholar 

  15. Kapp, M., Sabourin, R., Maupin, P.: An empirical study on diversity measures and margin theory for ensembles of classifiers. Information Fusion (2007)

    Google Scholar 

  16. Skalak, D.: The sources of increased accuracy for two proposed boosting algorithms. In: Proceedings of the 11th AAAI Conference on Artificial Intelligence, pp. 120–125 (1996)

    Google Scholar 

  17. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal 19(9), 699–707 (2001)

    Article  Google Scholar 

  18. Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 275–283 (1996)

    Google Scholar 

  19. Hashem, L., Salamon, P.: Neural network ensembles. IEEE Transaction on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  20. Tang, E., Suganthan, P., Yao, X.: An analysis of diversity measures. Machine Learning 65(1), 241–271 (2006)

    Article  Google Scholar 

  21. Schapire, R., Freund, Y., Bartlett, P., et al.: Boosting the margin: a new explanation for the effectiveness of voting methods. In: Proceedings of the Fourteenth International Conference on Machine Learning (ICML 1997), pp. 322–330 (1997)

    Google Scholar 

  22. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, pp. 365–368. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  23. Asuncion A, Newman, D.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, B., Wang, Z., Pan, R., Xu, G., Dolog, P. (2013). An Integrated Pruning Criterion for Ensemble Learning Based on Classification Accuracy and Diversity. In: Uden, L., Herrera, F., Bajo Pérez, J., Corchado Rodríguez, J. (eds) 7th International Conference on Knowledge Management in Organizations: Service and Cloud Computing. Advances in Intelligent Systems and Computing, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30867-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30867-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30866-6

  • Online ISBN: 978-3-642-30867-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics