Prioritizing Disease Genes by Bi-Random Walk | SpringerLink
Skip to main content

Prioritizing Disease Genes by Bi-Random Walk

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7302))

Included in the following conference series:

  • 2533 Accesses

Abstract

Random walk methods have been successfully applied to prioritizing disease causal genes. In this paper, we propose a bi-random walk algorithm (BiRW) based on a regularization framework for graph matching to globally prioritize disease genes for all phenotypes simultaneously. While previous methods perform random walk either on the protein-protein interaction network or the complete phenome-genome heterogenous network, BiRW performs random walk on the Kronecker product graph between the protein-protein interaction network and the phenotype similarity network. Three variations of BiRW that perform balanced or unbalanced bi-directional random walks are analyzed and compared with other random walk methods. Experiments on analyzing the disease phenotype-gene associations in Online Mendelian Inheritance in Man (OMIM) demonstrate that BiRW effectively improved disease gene prioritization over existing methods by ranking more known associations in the top 100 out of nearly 10,000 candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Consortium The Wellcome Trust Case Control. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)

    Google Scholar 

  2. Johnson, A., O’Donnell, C.: An open access database of genome-wide association resutls. BMC Med. Gent. 10, 6 (2009)

    Article  Google Scholar 

  3. Franke, L., Bakel, H., Fokkens, L., et al.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78, 1011–1025 (2006)

    Article  Google Scholar 

  4. Köhler, S., Bauer, S., Horn, D., et al.: Walking the Interactome for Prioritization of Candidate Disease Genes. Am. J. Hum. Genet. 82, 949–958 (2008)

    Article  Google Scholar 

  5. Wu, X.B., Jiang, R., Zhang, M.Q., et al.: Network-based global inference of human disease genes. Mol. Syst. Biol. 4 (2008)

    Google Scholar 

  6. Linghu, B., Snitkin, E.S., Hu, Z., et al.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)

    Google Scholar 

  7. Hwang, T.H., Kuang, R.: A Heterogeneous Label Propagation Algorithm for Disease Gene Discovery. In: Proc. of SIAM Intl. Conf. on Data Mining, pp. 583–594 (2010)

    Google Scholar 

  8. Vanunu, O., Magger, O., Ruppin, E., et al.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6, e1000641 (2010)

    Google Scholar 

  9. Li, Y., Patra, J.C.: Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics 26, 1219–1224 (2010)

    Article  Google Scholar 

  10. van Driel, M.A., Bruggeman, J., Vriend, G., et al.: A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14, 535–542 (2006)

    Article  Google Scholar 

  11. McKusick, V.A.: Mendelian inheritance in man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007)

    Article  Google Scholar 

  12. Peri, S., Navarro, J.D., Amanchy, R., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003)

    Article  Google Scholar 

  13. Chuang, H., Lee, E., Liu, Y., et al.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)

    Article  Google Scholar 

  14. Singh, R., Xu, J., Berger, B.: Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology. Res. in Comp. Mol. Biol. 4453, 16–31 (2007)

    Article  Google Scholar 

  15. Li, Z., Zhang, S., Wang, Y., et al.: Alignment of molecular networks by integer quadratic programming. Bioinformatics 23, 1631–1639 (2007)

    Article  Google Scholar 

  16. Guo, X., Hartemink, A.J.: Domain-oriented edge-based alignment of protein interaction networks. Bioinformatics 25, i240–i246 (2009)

    Google Scholar 

  17. Zaslavskiy, M., Bach, F., Vert, J.P.: Global alignment of protein-protein interaction networks by graph matching methods. Bioinformatics 25, i259–i267 (2009)

    Google Scholar 

  18. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. U.S.A. 105, 12763–12768 (2008)

    Article  Google Scholar 

  19. Zhou, D., et al.: Learning with Local and Global Consistency. Advanced Neural Information Processing Systems 16, 321–328 (2004)

    Google Scholar 

  20. Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  21. Xu, J., Li, Y.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, M., Hwang, T., Kuang, R. (2012). Prioritizing Disease Genes by Bi-Random Walk. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30220-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30220-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30219-0

  • Online ISBN: 978-3-642-30220-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics