Abstract
The major goal of transfer learning is to transfer knowledge acquired on a source task in order to facilitate learning on another, different, but usually related, target task. In this paper, we are using neuroevolution to evolve echo state networks on the source task and transfer the best performing reservoirs to be used as initial population on the target task. The idea is that any non-linear, temporal features, represented by the neurons of the reservoir and evolved on the source task, along with reservoir properties, will be a good starting point for a stochastic search on the target task. In a step towards full autonomy and by taking advantage of the random and fully connected nature of echo state networks, we examine a transfer method that renders any inter-task mappings of states and actions unnecessary. We tested our approach and that of inter-task mappings in two RL testbeds: the mountain car and the server job scheduling domains. Under various setups the results we obtained in both cases are promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bahceci, E., Miikkulainen, R.: Transfer of evolved pattern-based heuristics in games. In: IEEE Symposium on Computational Intelligence and Games (2008)
Chatzidimitriou, K.C., Mitkas, P.A.: A neat way for evolving echo state networks. In: European Conference on Artificial Intelligence, pp. 909–914 (2010)
Fernández, F., Veloso, M.: Probabilistic policy reuse in a reinforcement learning agent. In: 5th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 720–727 (2006)
Jaeger, H.: Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the “ echo state network” approach. Tech. Rep. GMD Report 159, German National Research Center for Information Technology (2002)
Madden, M.G., Howley, T.: Transfer of experience between reinforcement learning environments with progressive difficulty. Artif. Intell. Rev. 21(3-4), 375–398 (2004)
Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces. Machine Learning 22(1-3), 123–158 (1996)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)
Stone, P.: Learning and multiagent reasoning for autonomous agents. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 13–30 (January 2007), http://www.ijcai-07.org/
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Szita, I., Gyenes, V., Lőrincz, A.: Reinforcement Learning with Echo State Networks. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 830–839. Springer, Heidelberg (2006)
Tanner, B., White, A.: Rl-glue: Language-independent software for reinforcement-learning experiments. Journal of Machine Learning Research 10, 2133–2136 (2010)
Taylor, M., Stone, P.: Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research 10, 1633–1685 (2009)
Taylor, M.E., Jong, N.K., Stone, P.: Transferring Instances for Model-Based Reinforcement Learning. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 488–505. Springer, Heidelberg (2008)
Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement learning. In: AAMAS 2008: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 283–290 (2008)
Taylor, M.E., Whiteson, S., Stone, P.: Transfer via inter-task mappings in policy search reinforcement learning. In: 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8 (2007)
Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill Acquisition Via Transfer Learning and Advice Taking. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 425–436. Springer, Heidelberg (2006)
Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement learning. Journal of Machine Learning Research 7, 877–917 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatzidimitriou, K.C., Partalas, I., Mitkas, P.A., Vlahavas, I. (2012). Transferring Evolved Reservoir Features in Reinforcement Learning Tasks. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-29946-9_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29945-2
Online ISBN: 978-3-642-29946-9
eBook Packages: Computer ScienceComputer Science (R0)