Formal Concept Analysis as a Framework for Business Intelligence Technologies | SpringerLink
Skip to main content

Formal Concept Analysis as a Framework for Business Intelligence Technologies

  • Conference paper
Formal Concept Analysis (ICFCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7278))

Included in the following conference series:

Abstract

Numerical datasets in data mining are handled using various methods. In this paper, data mining of numerical data using FCA in combination with some interesting ideas from OLAP technology is proposed. This novel method is an enhancement of FCA, in which measures are assigned to objects and/or attributes and then various numeric operations are applied to these measures (e.g. summarization, aggregation functions etc.). This new approach results in a structure, which is a concept lattice and where the extent and/or intent have aggregated values assigned to them. This structure could be seen as a generalization of OLAP technology. A concept lattice can be constrained by using various closure operators. The new closure operators presented here are based on values with very clear meaning for the user. Finally, a fuzzy OLAP formalization based on FCA in a fuzzy setting and using measures is proposed. Examples are shown for each introduced topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  2. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate. Codd & Date (1993)

    Google Scholar 

  3. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)

    MATH  Google Scholar 

  4. Wang, Z., Klir, G.: Generalized measure theory. Springer, New York (2009)

    Book  MATH  Google Scholar 

  5. Maier, D.: The theory of relational databases. Computer Science Press, Rockville (1983)

    MATH  Google Scholar 

  6. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators. New Trends and Applications. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuznetsov, S.D., Kudryavtsev, A.: A mathematical model of the OLAP cubes. Programming and Computer Software 35(5), 257–265 (2009)

    Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  10. Pollandt, S.: Fuzzy Begriffe. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  11. Calvo, T., Kolesarova, A., Komornikova, M., Mesiar, R.: Aggregation operators: Properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators: New Trend and Applications, pp. 3–106. Physica Verlag, Heidelberg (2002)

    Google Scholar 

  12. Belohlavek, R., Macko, J.: Selecting Important Concepts Using Weights. In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS(LNAI), vol. 6628, pp. 65–80. Springer, Heidelberg (2011)

    Google Scholar 

  13. Belohlavek, R., Vychodil, V.: Background Knowledge in Formal Concept Analysis: Constraints via Closure Operators. In: ACM SAC 2010, pp. 1113–1114 (2010)

    Google Scholar 

  14. Bělohlávek, R., Vychodil, V.: Formal Concept Analysis with Constraints by Closure Operators. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 131–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by fuzzy closure operators. In: Int. Conf. Soft Computing and Intelligent Systems & Int. Symposium on Intelligent Systems, SCIS & ISIS 2006, Tokyo, Japan, September 20-24, pp. 309–314 (2006)

    Google Scholar 

  16. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: The IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005, Reno, Nevada, USA, May 22-25, pp. 663–668 (2005)

    Google Scholar 

  17. Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply Generated Fuzzy Concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. González, C., Tineo, L., Urrutia, A.: Fuzzy OLAP: A Formal Definition. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC, vol. 61, pp. 189–198. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Laurent, A., Bouchon-Meunier, B., Doucet, A.: Towards Fuzzy-OLAP Mining

    Google Scholar 

  20. Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macko, J. (2012). Formal Concept Analysis as a Framework for Business Intelligence Technologies. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29892-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29891-2

  • Online ISBN: 978-3-642-29892-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics