Abstract
Numerical datasets in data mining are handled using various methods. In this paper, data mining of numerical data using FCA in combination with some interesting ideas from OLAP technology is proposed. This novel method is an enhancement of FCA, in which measures are assigned to objects and/or attributes and then various numeric operations are applied to these measures (e.g. summarization, aggregation functions etc.). This new approach results in a structure, which is a concept lattice and where the extent and/or intent have aggregated values assigned to them. This structure could be seen as a generalization of OLAP technology. A concept lattice can be constrained by using various closure operators. The new closure operators presented here are based on values with very clear meaning for the user. Finally, a fuzzy OLAP formalization based on FCA in a fuzzy setting and using measures is proposed. Examples are shown for each introduced topic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)
Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate. Codd & Date (1993)
Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)
Wang, Z., Klir, G.: Generalized measure theory. Springer, New York (2009)
Maier, D.: The theory of relational databases. Computer Science Press, Rockville (1983)
Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators. New Trends and Applications. Physica-Verlag, Heidelberg (2002)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Kuznetsov, S.D., Kudryavtsev, A.: A mathematical model of the OLAP cubes. Programming and Computer Software 35(5), 257–265 (2009)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
Pollandt, S.: Fuzzy Begriffe. Springer, Heidelberg (1997)
Calvo, T., Kolesarova, A., Komornikova, M., Mesiar, R.: Aggregation operators: Properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators: New Trend and Applications, pp. 3–106. Physica Verlag, Heidelberg (2002)
Belohlavek, R., Macko, J.: Selecting Important Concepts Using Weights. In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS(LNAI), vol. 6628, pp. 65–80. Springer, Heidelberg (2011)
Belohlavek, R., Vychodil, V.: Background Knowledge in Formal Concept Analysis: Constraints via Closure Operators. In: ACM SAC 2010, pp. 1113–1114 (2010)
Bělohlávek, R., Vychodil, V.: Formal Concept Analysis with Constraints by Closure Operators. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 131–143. Springer, Heidelberg (2006)
Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by fuzzy closure operators. In: Int. Conf. Soft Computing and Intelligent Systems & Int. Symposium on Intelligent Systems, SCIS & ISIS 2006, Tokyo, Japan, September 20-24, pp. 309–314 (2006)
Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: The IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005, Reno, Nevada, USA, May 22-25, pp. 663–668 (2005)
Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply Generated Fuzzy Concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005)
González, C., Tineo, L., Urrutia, A.: Fuzzy OLAP: A Formal Definition. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC, vol. 61, pp. 189–198. Springer, Heidelberg (2009)
Laurent, A., Bouchon-Meunier, B., Doucet, A.: Towards Fuzzy-OLAP Mining
Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Macko, J. (2012). Formal Concept Analysis as a Framework for Business Intelligence Technologies. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-29892-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29891-2
Online ISBN: 978-3-642-29892-9
eBook Packages: Computer ScienceComputer Science (R0)