Flow-Based Combinatorial Chance Constraints | SpringerLink
Skip to main content

Abstract

We study stochastic variants of flow-based global constraints as combinatorial chance constraints. As a specific case study, we focus on the stochastic weighted alldifferent constraint. We first show that determining the consistency of this constraint is NP-hard. We then show how the combinatorial structure of the alldifferent constraint can be used to define chance-based filtering, and to compute a policy. Our propagation algorithm can be extended immediately to related flow-based constraints such as the weighted cardinality constraint. The main benefits of our approach are that our chance-constrained global constraints can be integrated naturally in classical deterministic CP systems, and are more scalable than existing approaches for stochastic constraint programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall (1993)

    Google Scholar 

  2. Altarelli, F., Braunstein, A., Ramezanpour, A., Zecchina, R.: Stochastic Matching Problem. Physical Review Letters 106(190601) (2011)

    Google Scholar 

  3. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When lp is the cure for your matching woes: Improved bounds for stochastic matchings. In: Proceedings of the 18th Annual European Symposium on Algorithms, pp. 218–230. Springer (2010)

    Google Scholar 

  4. Beldiceanu, N., Katriel, I., Thiel, S.: Filtering Algorithms for the Same Constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 65–79. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Brown, K.N., Miguel, I.: Uncertainty and Change. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 21. Elsevier (2006)

    Google Scholar 

  6. Chaudhuri, K., Daskalakis, C., Kleinberg, R.D., Lin, H.: Online bipartite perfect matching with augmentations. In: INFOCOM, pp. 1044–1052 (2009)

    Google Scholar 

  7. Chen, N., Immorlica, N., Karlin, A., Mahdian, M., Rudra, A.: Approximating matches made in heaven. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming, pp. 266–278 (2009)

    Google Scholar 

  8. Derman, C., Lieberman, G.J., Ross, S.M.: A Sequential Stochastic Assignment Problem. Management Science 18(7), 349–355 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escoffier, B., Gourvès, L., Monnot, J., Spanjaard, O.: Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation. European Journal of Operational Research 205(1), 19–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fargier, H., Lang, J.: Uncertainty in Constraint Satisfaction Problems: A Probabilistic Approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 97–104. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  11. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T.: A constraint satisfaction framework for decision under uncertainty. In: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, pp. 167–174. Morgan Kaufmann (1995)

    Google Scholar 

  12. Feldman, J., Mehta, A., Mirrokni, V.S., Muthukrishnan, S.: Online Stochastic Matching: Beating 1-1/e. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 117–126. IEEE Computer Society (2009)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co. (1979)

    Google Scholar 

  14. Hauskrecht, M., Upfal, E.: A clustering approach to solving large stochastic matching problems. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 219–226 (2001)

    Google Scholar 

  15. Hnich, B., Rossi, R., Tarim, S.A., Prestwich, S.: Synthesizing Filtering Algorithms for Global Chance-Constraints. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 439–453. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown distributions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 587–596. ACM (2011)

    Google Scholar 

  17. Katriel, I., Kenyon-Mathieu, C., Upfal, E.: Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 171–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Kong, N., Schaefer, A.J.: A factor 1/2 approximation algorithm for two-stage stochastic matching problems. European Journal of Operational Research 172(3), 740–746 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Louveaux, F.V., Schultz, R.: Stochastic Integer Programming. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier (2003)

    Google Scholar 

  20. Majercik, S.M.: Stochastic Boolean Satisfiability. In: Biere, A., Heule, M., van Maaren, M., Walsh, T. (eds.) Handbook of Satisfiability, pp. 887–925. IOS Press (2009)

    Google Scholar 

  21. Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, vol. 1, pp. 362–367. AAAI Press (1994)

    Google Scholar 

  22. Régin, J.C.: Cost-Based Arc Consistency for Global Cardinality Constraints. Constraints 7, 387–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S.D.: A Global Chance-Constraint for Stochastic Inventory Systems Under Service Level Constraints. Constraints 13(4), 490–517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S.D.: Cost-Based Domain Filtering for Stochastic Constraint Programming. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 235–250. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based Approach. Constraints 11(1), 53–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tarim, S.A., Hnich, B., Rossi, R., Prestwich, S.D.: Cost-Based Filtering Techniques for Stochastic Inventory Control Under Service Level Constraints. Constraints 14(2), 137–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Terekhov, D., Beck, J.C.: A constraint programming approach for solving a queueing control problem. J. Artif. Int. Res. 32, 123–167 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Terekhov, D., Beck, J.C., Brown, K.N.: A Constraint Programming Approach for Solving a Queueing Design and Control Problem. INFORMS Journal on Computing 21(4), 549–561 (2009)

    Article  MathSciNet  Google Scholar 

  29. Walsh, T.: Stochastic Constraint Programming. In: Proceedings of the 15th Eureopean Conference on Artificial Intelligence, pp. 111–115. IOS Press (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cire, A.A., Coban, E., van Hoeve, WJ. (2012). Flow-Based Combinatorial Chance Constraints. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29828-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29827-1

  • Online ISBN: 978-3-642-29828-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics