Improving the Performance of FD Constraint Solving in a CFLP System | SpringerLink
Skip to main content

Improving the Performance of FD Constraint Solving in a CFLP System

  • Conference paper
Functional and Logic Programming (FLOPS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7294))

Included in the following conference series:

Abstract

Constraint Functional Logic Programming (CFLP) integrates lazy narrowing with constraint solving. It provides a high modeling abstraction, but its solving performance can be penalized by lazy narrowing and solver interface surcharges. As for real-world problems most of the solving time is carried out by solver computations, the system performance can be improved by interfacing state-of-the-art external solvers with proven performance. In this work we depart from the CFLP system \(\mathcal{TOY(FD})\), implemented in SICStus Prolog and supporting Finite Domain (\(\mathcal{FD}\)) constraints by using its underlying Prolog \(\mathcal{FD}\) solver. We present a scheme describing how to interface an external CP(\(\mathcal{FD}\)) solver to \(\mathcal{TOY(FD})\), and easily adaptable to other Prolog CLP or CFLP systems. We prove the scheme to be generic enough by interfacing Gecode and ILOG solvers, and we analyze the new performance achieved.

This work has been partially supported by the Spanish projects TIN2008-06622-C03-01, UCM-BSCH-GR58/08-910502, and S2009TIC-1465.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Curry: a truly integrated functional logic language, http://www-ps.informatik.uni-kiel.de/currywiki

  2. Gecode 3.6.0: generic constraint development environment, http://www.gecode.org

  3. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS 1967, pp. 483–485. ACM (1967)

    Google Scholar 

  4. Castiñeiras, I., Sáenz-Pérez, F.: Integrating ILOG CP Technology into \(\mathcal{TOY}\). In: Escobar, S. (ed.) WFLP 2009. LNCS, vol. 5979, pp. 27–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Castiñeiras, I., Sáenz-Pérez, F.: A CFLP Approach for Modeling and Solving a Real Life Employee Timetabling Problem. In: COPLAS 2011, pp. 63–70 (2011)

    Google Scholar 

  6. CSPLib: a problem library for constraints, http://www.csplib.org

  7. García de la Banda, M., Jeffery, D., Marriott, K., Nethercote, N., Stuckey, P.J., Holzbaur, C.: Building Constraint Solvers with HAL. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 90–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Dechter, R.: Constraint processing. Morgan Kaufmann (2003)

    Google Scholar 

  9. Fernández, A.J., Hortalá-González, T., Sáenz-Pérez, F., del Vado-Vírseda, R.: Constraint Functional Logic Programming over Finite Domains. TPLP 7(5), 537–582 (2007)

    MATH  Google Scholar 

  10. Hanus, M.: Multi-paradigm Declarative Languages. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Hentenryck, P.V.: Constraint Satisfaction in Logic Programming. MIT Press (1989)

    Google Scholar 

  12. IBM ILOG CP 1.6, http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/IBM_ILOG_CP

  13. Jaffar, J., Maher, M.: Constraint logic programming: a survey. The Journal of Logic Programming 19-20, 503–581 (1994)

    Article  MathSciNet  Google Scholar 

  14. López-Fraguas, F., Rodríguez-Artalejo, M., Vado-Vírseda, R.: A lazy narrowing calculus for declarative constraint programming. In: PPDP 2004, pp. 43–54. ACM (2004)

    Google Scholar 

  15. Marriot, K., Stuckey, P.J.: Programming with constraints. MIT Press (1998)

    Google Scholar 

  16. Marte, M.: Towards constraint-based school timetabling. Annals OR 155(1), 207–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. MiniZinc 1.4.2, http://www.g12.cs.mu.oz.au/minizinc

  18. PAKCS, http://www.informatik.uni-kiel.de/pakcs

  19. Peyton-Jones, S.: Haskell 98 language and libraries: the revised report. Technical report (2002), http://www.haskell.org/onlinereport

  20. Pinedo, M.: Planning and Scheduling in Manufacturing and Services. Springer Series in Operations Research (2004)

    Google Scholar 

  21. Reischuk, R.M., Schulte, C., Stuckey, P.J., Tack, G.: Maintaining State in Propagation Solvers. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 692–706. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. SICStus Prolog, http://www.sics.se/isl/sicstuswww/site/index.html

  23. SWI, http://www.swi-prolog.org

  24. Van Roy, P., Brand, P., Duchier, D., Haridi, S., Henz, M., Schulte, C.: Logic programming in the context of multiparadigm programming: the Oz experience. TPLP 3(6), 717–763 (2003)

    MATH  Google Scholar 

  25. Wallace, M., Schimpf, J., Shen, K., Harvey, W.: On benchmarking constraint logic programming platforms. Response to fernandez and hill’s “a comparative study of eight constraint programming languages over the boolean and finite domains”. Constraints 9(1), 5–34 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wuille, P., Schrijvers, T.: Parameterized Models for On-Line and Off-Line Use. In: Mariño, J. (ed.) WFLP 2010. LNCS, vol. 6559, pp. 101–118. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Yang, M., Cai, L., Song, G.: Constraint satisfaction timetabling research based on course-period-template selection and conflict-vector detection. In: FCST 2010, pp. 582–588 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castiñeiras, I., Sáenz-Pérez, F. (2012). Improving the Performance of FD Constraint Solving in a CFLP System. In: Schrijvers, T., Thiemann, P. (eds) Functional and Logic Programming. FLOPS 2012. Lecture Notes in Computer Science, vol 7294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29822-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29822-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29821-9

  • Online ISBN: 978-3-642-29822-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics