Differential Evolution with Competing Strategies Applied to Partitional Clustering | SpringerLink
Skip to main content

Differential Evolution with Competing Strategies Applied to Partitional Clustering

  • Conference paper
Swarm and Evolutionary Computation (EC 2012, SIDE 2012)

Abstract

We consider the problem of optimal partitional clustering of real data sets by optimizing three basic criteria (trace of within scatter matrix, variance ratio criterion, and Marriottt’s criterion). Four variants of the algorithm based on differential evolution with competing strategies are compared on eight real-world data sets. The experimental results showed that hybrid variants with k-means algorithm for a local search are essentially more efficient than the others. However, the use of Marriottt’s criterion resulted in stopping hybrid variants at a local minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brest, J., Greiner, S., Boškovič, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)

    Article  Google Scholar 

  2. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans 38(1), 218–237 (2008)

    Article  Google Scholar 

  3. Das, S., Sil, S.: Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm. Information Sciences 180(8), 1237–1256 (2010)

    Article  MathSciNet  Google Scholar 

  4. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15, 27–54 (2011)

    Google Scholar 

  5. Feoktistov, V.: Differential Evolution in Search of Sotution. Springer, Heidelberg (2006)

    Google Scholar 

  6. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  7. Friedman, H.P., Rubin, J.: On some invariant criteria for grouping data. Journal of the American Statistical Association 62(320), 1159–1178 (1967)

    MathSciNet  Google Scholar 

  8. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  9. Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. European J. Operational Research 169, 1176–1184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krink, T., Paterlini, S., Resti, A.: Using differential evolution to improve the accuracy of bank rating systems. Computational Statistics & Data Analysis 52(1), 68–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kwedlo, W.: A clustering method combining differential evolution with the K-means algorithm. Pattern Recognition Letters 32(12), 1613–1621 (2011)

    Article  Google Scholar 

  12. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artificial Intelligence Review 33, 61–106 (2010)

    Article  Google Scholar 

  13. Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Computational Statistics & Data Analysis 50(5), 1220–1247 (2006)

    Article  MathSciNet  Google Scholar 

  14. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tvrdík, J.: Competitive differential evolution. In: Matoušek, R., Ošmera, P. (eds.) MENDEL 2006: 12th International Conference on Soft Computing, pp. 7–12. University of Technology, Brno (2006)

    Google Scholar 

  17. Tvrdík, J.: Self-adaptive variants of differential evolution with exponential crossover. Analele of West University Timisoara, Series Mathematics-Informatics 47, 151–168 (2009), http://www1.osu.cz/~tvrdik/ (reprint available [ONLINE])

    MATH  Google Scholar 

  18. Tvrdík, J., Křivý, I.: Differential evolution in partitional clustering. In: Matoušek, R. (ed.) 16th International Conference on Soft Computing, MENDEL 2010, pp. 7–14 (2010)

    Google Scholar 

  19. Tvrdík, J., Křivý, I.: Hybrid adaptive differential evolution in partitional clustering. In: Matoušek, R. (ed.) 17th International Conference on Soft Computing, MENDEL 2011, pp. 1–8 (2011)

    Google Scholar 

  20. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15, 55–66 (2011)

    Article  Google Scholar 

  21. Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms. Applied Soft Computing 9, 1126–1138 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tvrdík, J., Křivý, I. (2012). Differential Evolution with Competing Strategies Applied to Partitional Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29353-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29352-8

  • Online ISBN: 978-3-642-29353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics