Abstract
We consider the problem of optimal partitional clustering of real data sets by optimizing three basic criteria (trace of within scatter matrix, variance ratio criterion, and Marriottt’s criterion). Four variants of the algorithm based on differential evolution with competing strategies are compared on eight real-world data sets. The experimental results showed that hybrid variants with k-means algorithm for a local search are essentially more efficient than the others. However, the use of Marriottt’s criterion resulted in stopping hybrid variants at a local minimum.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brest, J., Greiner, S., Boškovič, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)
Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans 38(1), 218–237 (2008)
Das, S., Sil, S.: Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm. Information Sciences 180(8), 1237–1256 (2010)
Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15, 27–54 (2011)
Feoktistov, V.: Differential Evolution in Search of Sotution. Springer, Heidelberg (2006)
Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
Friedman, H.P., Rubin, J.: On some invariant criteria for grouping data. Journal of the American Statistical Association 62(320), 1159–1178 (1967)
Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. European J. Operational Research 169, 1176–1184 (2006)
Krink, T., Paterlini, S., Resti, A.: Using differential evolution to improve the accuracy of bank rating systems. Computational Statistics & Data Analysis 52(1), 68–87 (2007)
Kwedlo, W.: A clustering method combining differential evolution with the K-means algorithm. Pattern Recognition Letters 32(12), 1613–1621 (2011)
Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artificial Intelligence Review 33, 61–106 (2010)
Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Computational Statistics & Data Analysis 50(5), 1220–1247 (2006)
Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)
Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11, 341–359 (1997)
Tvrdík, J.: Competitive differential evolution. In: Matoušek, R., Ošmera, P. (eds.) MENDEL 2006: 12th International Conference on Soft Computing, pp. 7–12. University of Technology, Brno (2006)
Tvrdík, J.: Self-adaptive variants of differential evolution with exponential crossover. Analele of West University Timisoara, Series Mathematics-Informatics 47, 151–168 (2009), http://www1.osu.cz/~tvrdik/ (reprint available [ONLINE])
Tvrdík, J., Křivý, I.: Differential evolution in partitional clustering. In: Matoušek, R. (ed.) 16th International Conference on Soft Computing, MENDEL 2010, pp. 7–14 (2010)
Tvrdík, J., Křivý, I.: Hybrid adaptive differential evolution in partitional clustering. In: Matoušek, R. (ed.) 17th International Conference on Soft Computing, MENDEL 2011, pp. 1–8 (2011)
Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15, 55–66 (2011)
Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms. Applied Soft Computing 9, 1126–1138 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tvrdík, J., Křivý, I. (2012). Differential Evolution with Competing Strategies Applied to Partitional Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-29353-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29352-8
Online ISBN: 978-3-642-29353-5
eBook Packages: Computer ScienceComputer Science (R0)