Abstract
This paper presents a work inspired by the Pachycondyla apicalis ants behavior for the clustering problem. These ants have a simple but efficient prey search strategy: when they capture their prey, they return straight to their nest, drop off the prey and systematically return back to their original position. This behavior has already been applied to optimization, as the API meta-heuristic. API is a shortage of api-calis. Here, we combine API with the ability of ants to sort and cluster. We provide a comparison against Ant clustering Algorithm and K-Means using Machine Learning repository datasets. API introduces new concepts to ant-based models and gives us promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Admane, L., Benatchba, K., Koudil, M., Siad, L., Maziz, S.: Antpart: an algorithm for the unsupervised classification problem using ants. Applied Mathematics and Computation 180(1), 16–28 (2006)
Aupetit, S., Monmarché, N., Slimane, M.: Training of hidden markov models using api ant algorithm. In: Monmarché, N., Guinand, F., Siarry, P. (eds.) Artificial Ants: from Collective Intelligence to Real Life Optimization and Beyond, ch. 12. ISTE - Wiley (2010)
Bonabeau, E., Dorigo, M., Theraulaz, G.: From Natural to Artificial Swarm Intelligence. Oxford University Press (1999)
Boryczka, U.: Ant Clustering Algorithm. In: Intelligent Information Systems, vol. (1998), pp. 455–458. IEEE (2008)
Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The Dynamics of Collective Sorting: Robot-Like Ants and Ant-Like Robots. In: Meyer, J.A., Wilson, S.W. (eds.) Proc. 1st Int. Conf. on Simulation of Adaptive Behaviour, pp. 356–363. MIT Press (1991)
Hamdi, A., Antoine, V., Monmarché, N., Alimi, A., Slimane, M.: Artificial ants for automatic classification. In: Monmarché, N., Guinand, F., Siarry, P. (eds.) Artificial Ants: From Collective Intelligence to Real Life Optimization and Beyond, ch. 13, ISTE - Wiley (2010)
Handl, J., Knowles, J., Dorigo, M.: Ant-based clustering and topographic mapping. Artificial Life 12(1), 35–61 (2006)
Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2), 95–113 (2007)
Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)
Lumer, E., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Meyer, J.A., Wilson, S.W. (eds.) Proc. of the Third Int. Conf. on Simulation of Adaptive Behavior From Animals to Animats, vol. 3, pp. 501–508 (1994)
Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Machine Learning 82(1), 1–42 (2010)
Monmarché, N., Venturini, G., Slimane, M.: On how Pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems 16(8), 937–946 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Amadou Kountché, D., Monmarché, N., Slimane, M. (2012). The Pachycondyla Apicalis Ants Search Strategy for Data Clustering Problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-29353-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29352-8
Online ISBN: 978-3-642-29353-5
eBook Packages: Computer ScienceComputer Science (R0)