Full Body Motion Tracking in Monocular Images Using Particle Swarm Optimization | SpringerLink
Skip to main content

Full Body Motion Tracking in Monocular Images Using Particle Swarm Optimization

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

  • 2260 Accesses

Abstract

The estimation of full body pose in monocular images is a very difficult problem. In 3D-model based motion tracking the challenges arise as at least one-third of degrees of freedom of the human pose that needs to be recovered is nearly unobservable in any given monocular image. In this paper, we deal with high dimensionality of the search space through estimating the pose in a hierarchical manner using Particle Swarm Optimization. Our method fits the projected body parts of an articulated model to detected body parts at color images with support of edge distance transform. The algorithm was evaluated quantitatively through the use of the motion capture data as ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 44–58 (2006)

    Article  Google Scholar 

  2. Arsic, D., Lyutskanov, A., Rigoll, G., Kwolek, B.: Multi camera person tracking applying a graph-cuts based foreground segmentation in a homography framework. In: IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance, pp. 30–37. IEEE Press, Piscataway (2009)

    Google Scholar 

  3. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for bayesian filtering. Statistics and Computing 10(1), 197–208 (2000)

    Article  Google Scholar 

  4. Gavrila, D.M., Davis, L.S.: 3-D model-based tracking of humans in action: a multi-view approach. In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR 1996), pp. 73–80. IEEE Computer Society, Washington, DC (1996)

    Chapter  Google Scholar 

  5. John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical Particle Swarm Optimisation. Image Vis. Comput. 28, 1530–1547 (2010)

    Article  Google Scholar 

  6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Chapter  Google Scholar 

  7. Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. In: Int. Conf. on Computer as a Tool, EUROCON 2003, vol. 2, pp. 144–148 (2003)

    Google Scholar 

  8. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-Accelerated Tracking of the Motion of 3D Articulated Figure. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 155–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)

    Article  Google Scholar 

  10. Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: Proc. of the Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 326–333. IEEE Comp. Society (2004)

    Google Scholar 

  11. Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A.: Challenges of Human Behavior Understanding. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 1–12. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Schmidt, J., Fritsch, J., Kwolek, B.: Kernel particle filter for real-time 3D body tracking in monocular color images. In: IEEE Int. Conf. on Face and Gesture Rec., Southampton, UK, pp. 567–572. IEEE Computer Society Press (2006)

    Google Scholar 

  13. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: Proc. of IEEE Int. Conf. on Computer Vision, ICCV 2003, vol. 2, pp. 750–757. IEEE Computer Society, Washington, DC (2003)

    Chapter  Google Scholar 

  14. Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3D human tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, CVPR 2003, pp. 69–76. IEEE Computer Society (2003)

    Google Scholar 

  15. Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., Maybank, S.: A swarm intelligence based searching strategy for articulated 3D human body tracking. In: IEEE Workshop on 3D Information Extraction for Video Analysis and Mining in conjuction with CVPR, pp. 45–50. IEEE Press, Piscataway (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rymut, B., Krzeszowski, T., Kwolek, B. (2012). Full Body Motion Tracking in Monocular Images Using Particle Swarm Optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics