Abstract
This paper presents the parallel architecture of the Recurrent Multi Layer Perceptron learning algorithm. The proposed solution is based on the high parallel three dimensional structure to speed up learning performance. Detailed parallel neural network structures are explicitly shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bilski, J., Litwiński, S., Smoląg, J.: Parallel Realisation of QR Algorithm for Neural Networks Learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)
Bilski, J., Smoląg, J.: Parallel Realisation of the Recurrent RTRN Neural Network Learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)
Bilski, J., Smoląg, J.: Parallel Realisation of the Recurrent Elman Neural Network Learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg (2010)
Kolen, J.F., Kremer, S.C.: A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press (2001)
Korbicz, J., Patan, K., Obuchowicz, A.: Dynamic neural networks for process modelling in fault detection and isolation. Int. J. Appl. Math. Comput. Sci. 9(3), 519–546 (1999)
Smoląg, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proc. of V Conf. Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)
Smoląg, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proc. of IV Conf. Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)
Williams, R., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 270–280 (1989)
Korytkowski, M., Scherer, R., Rutkowski, L.: On Combining Backpropagation with Boosting. In: International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada, pp. 1274–1277 (2006)
Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 510–517. Springer, Heidelberg (2004)
Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Non-monotonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 518–525. Springer, Heidelberg (2004)
Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, December 2-5, vol. 3, pp. 1428–1431 (2001)
Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)
Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)
Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)
Starczewski, J., Rutkowski, L.: Neuro-Fuzzy Systems of Type 2. In: Proc. 1st Int’l Conf. on Fuzzy Systems and Knowledge Discovery, Singapore, vol. 2, pp. 458–462 (2002)
Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg, New York (2003)
Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bilski, J., Smoląg, J. (2012). Parallel Realisation of the Recurrent Multi Layer Perceptron Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-29347-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29346-7
Online ISBN: 978-3-642-29347-4
eBook Packages: Computer ScienceComputer Science (R0)