Abstract
Recent studies have shown strong correlation between social networking data and national influenza rates. We expanded upon this success to develop an automated text mining system that classifies Twitter messages in real time into six syndromic categories based on key terms from a public health ontology. 10-fold cross validation tests were used to compare Naive Bayes (NB) and Support Vector Machine (SVM) models on a corpus of 7431 Twitter messages. SVM performed better than NB on 4 out of 6 syndromes. The best performing classifiers showed moderately strong F1 scores: respiratory = 86.2 (NB); gastrointestinal = 85.4 (SVM polynomial kernel degree 2); neurological = 88.6 (SVM polynomial kernel degree 1); rash = 86.0 (SVM polynomial kernel degree 1); constitutional = 89.3 (SVM polynomial kernel degree 1); hemorrhagic = 89.9 (NB). The resulting classifiers were deployed together with an EARS C2 aberration detection algorithm in an experimental online system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: Understanding microblogging usage and communities. In: Proc. 9th WebKDD and 1st SNA-KDD Workshop on Web Mining and Social Network Analysis, August 12. ACM (2007)
Collier, N., Nguyen, S.T., Nguyen, M.T.N.: OMG U got flu? analysis of shared health messages for bio-surveillance. Biomedical Semantics 2(suppl. 5), S10 (2011)
Earle, P.: Earthquake twitter. Nature Geoscience 3(4), 221–222 (2010), doi:10.1038/ngeo832
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proc. of the 19th International World Wide Web Conference, Raleigh, NC, USA, pp. 851–860 (2010)
Hartley, D., Nelson, N., Walters, R., Arthur, R., Yangarber, R., Madoff, L., Linge, J., Mawudeku, A., Collier, N., Brownstein, J., Thinus, G., Lightfoot, N.: The landscape of international biosurveillance. Emerging Health Threats J. 3(e3) (January 2010), doi:10.1093/bioinformatics/btn534
Szomszor, M., Kostkova, P., De Quincey, E.: swineflu : Twitter predicts swine flu outbreak in 2009 (December 2009)
Lampos, V., De Bie, T., Cristianini, N.: Flu Detector - Tracking Epidemics on Twitter. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 599–602. Springer, Heidelberg (2010)
Signorini, A., Segre, A.M., Polgreen, P.M.: The use of twitter to track levels of disease activity and public concern in the U.S. during the influenza a h1n1 pandemic. PLoS One 6(5), e19467 (2011)
Wagner, M.M., Espino, J., Tsui, F.C., Gesteland, P., Chapman, W., Ivanov, W., Moore, A., Wong, W., Dowling, J., Hutman, J.: Syndrome and outbreak detection using chief-complaint data - experience of the real-time outbreak and disease surveillance project. Morbidity and Mortality Weekly Report (MMWR) 53(suppl.), 28–31 (2004)
Collier, N., Doan, S., Kawazoe, A., Matsuda Goodwin, R., Conway, M., Tateno, Y., Ngo, Q., Dien, D., Kawtrakul, A., Takeuchi, K., Shigematsu, M., Taniguchi, K.: BioCaster:detecting public health rumors with a web-based text mining system. Bioinformatics 24(24), 2940–2941 (2008), doi:10.1093/bioinformatics/btn534
Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)
Christensen, L.M., Haug, P.J., Fiszmann, M.: Mplus: A probabilistic medical language understanding model. In: Proceedings of the Workshop on Natural Language Processing in the Biomedical Domain, Philadelphia, USA (July 2002)
Hutwagner, L., Thompson, W., Seeman, M.G., Treadwell, T.: The bioterrorism preparedness and response early aberration reporting system (EARS). J. Urban Health 80(2), i89–i96 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Collier, N., Doan, S. (2012). Syndromic Classification of Twitter Messages. In: Kostkova, P., Szomszor, M., Fowler, D. (eds) Electronic Healthcare. eHealth 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29262-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-29262-0_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29261-3
Online ISBN: 978-3-642-29262-0
eBook Packages: Computer ScienceComputer Science (R0)