Fuzzy Associative Memories Based on Subsethood and Similarity Measures with Applications to Speaker Identification | SpringerLink
Skip to main content

Fuzzy Associative Memories Based on Subsethood and Similarity Measures with Applications to Speaker Identification

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7209))

Included in the following conference series:

Abstract

Recently, we presented a non-distributive fuzzy associative memory (FAM) called the Kosko subsethood FAM, for short KS-FAM. This model can be classified as a morphological neural network because it is based on computing the degree of fuzzy inclusion or subsethood of patterns and this operation can be considered an erosion in fuzzy mathematical morphology. In this paper, we introduce a whole range of extensions of the KS-FAM called S-FAMs, dual S-FAMs, and SM-FAMs. Here, the acronyms S-FAM and SM-FAM stand for respectively subsethood FAM and similarity measure FAM. The new models share some properties with the KS-FAM such as unlimited absolute storage capacity and a small number of spurious memories. The paper finishes some experimental results concerning the problem of text-independent speaker identification. For comparative purposes, we included the recognition rates obtained by some well-known classifiers from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandler, W., Kohout, L.: Fuzzy power sets and fuzzy implication operators. Fuzzy Sets and Systems 4(1), 13–30 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Battiti, R.: First and second-order methods for learning: between steepest descent and Newton’s method. Neural Computation 4, 141–166 (1992)

    Article  Google Scholar 

  3. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1993)

    Google Scholar 

  4. Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognition 28(9), 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  5. Campbell, J.: Speaker recognition: A tutorial. Proceedings of the IEEE 85(9), 1437–1462 (1997)

    Article  Google Scholar 

  6. Cornelis, C., der Donck, C.V., Kerre, E.: Sinha-Dougherty approach to the fuzzification of set inclusion revisited. Fuzzy Sets and Systems 134(2), 283–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology, part 1: basic concepts. International Journal of General Systems 23, 155–171 (1994)

    Article  Google Scholar 

  8. Deng, T.Q., Heijmans, H.J.A.M.: Grey-scale morphology based on fuzzy logic. Journal of Mathematical Imaging and Vision 16(2), 155–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Nola, A., Sessa, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Norwell (1989)

    MATH  Google Scholar 

  10. Fan, J., Xie, W., Pei, J.: Subsethood measure: new definitions. Fuzzy Sets and Systems 106(2), 201–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gish, H., Schmidt, M.: Text-independent speaker identification. IEEE Signal Processing Magazine 11(4), 18–32 (1994)

    Article  Google Scholar 

  12. Jurafsky, D., Martin, J.: Speach and Language Processing: An Introduction to Natural Language Processing. In: Computational Linguistics, and Speech Recognition, 2nd edn. Prentice Hall Series in Artificial Intelligence, Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  13. Kaburlasos, V.G., Athanasiadis, I.N., Mitkas, P.A.: Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. International Journal of Approximate Reasoning 45(1), 152–188 (2007)

    Article  MATH  Google Scholar 

  14. Kaburlasos, V.G., Papadakis, S.E.: A granular extension of the fuzzy-artmap (FAM) neural classifier based on fuzzy lattice reasoning (FLR). Neurocomputing 72(10-12), 2067–2078 (2009)

    Article  Google Scholar 

  15. Kaburlasos, V.G., Petridis, V.: Fuzzy lattice neurocomputing (FLN) models. Neural Networks 13(10), 1145–1170 (2000)

    Article  Google Scholar 

  16. Kaburlasos, V.G., Moussiades, L., Vakali, A.: Fuzzy lattice reasoning (FLR) type neural computation for weighted graph partitioning. Neurocomput. 72, 2121–2133 (2009)

    Article  Google Scholar 

  17. Kitainik, L.: Fuzzy Decision Procedures with Binary Relations. Kluwer Academic Publishers (1993)

    Google Scholar 

  18. Kosko, B.: Fuzziness vs. probability. Int. J. General Systems 17, 211–240 (1990)

    Article  MATH  Google Scholar 

  19. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  20. Kuncheva, L.I.: Fuzzy rough sets: Application to feature selection. Fuzzy Sets and Systems 51(2), 147–153 (1992)

    Article  MathSciNet  Google Scholar 

  21. Lee, H.M., Wang, W.T.: A neural network architecture for classification of fuzzy inputs. Fuzzy Sets Syst. 63, 159–173 (1994)

    Article  Google Scholar 

  22. Liu, X.: Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst. 52, 305–318 (1992)

    Article  MATH  Google Scholar 

  23. Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets and Systems 124(1), 73–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Towards Human-Centric Computing. Wiley, IEEE Press, New York (2007)

    Google Scholar 

  25. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2001)

    Google Scholar 

  26. Sinha, D., Dougherty, E.R.: Fuzzification of set inclusion: theory and applications. Fuzzy Sets and Systems 55(1), 15–42 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sinha, D., Sinha, P., Dougherty, E.R., Batman, S.: Design and analysis of fuzzy morphological algorithms for image processing. IEEE Transactions on Fuzzy Systems 5(4), 570–583 (1997)

    Article  Google Scholar 

  28. Sussner, P., Esmi, E.: An Introduction to the Kosko Subsethood FAM. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 343–350. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Sussner, P., Esmi, E.L., Villaverde, I., Graña, M.: The Kosko subsethood fuzzy associative memory (KS-FAM): Mathematical background and applications in computer vision. Journal of Mathematical Imaging and Vision (2011)

    Google Scholar 

  30. Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. Journal of Mathematical Imaging and Vision 32(2), 139–159 (2008)

    Article  MathSciNet  Google Scholar 

  31. Sussner, P., Valle, M.E.: Fuzzy associative memories and their relationship to mathematical morphology. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, ch. 33, John Wiley and Sons, Inc., New York (2008)

    Google Scholar 

  32. Togneri, R., Pullella, D.: An overview of speaker identification: Accuracy and robustness issues. IEEE Circuits and Systems Magazine 11(2), 23–61 (2011)

    Article  Google Scholar 

  33. Valle, M.E., Sakuray, F.: Database and MATLAB® source codes for ASI using MFCCs. Center for Exact Sciences, University of Londrina, Brazil (2011), http://www.uel.br/pessoal/valle/Codes/Speaker_Recognition.zip

  34. Valle, M.E., Sussner, P.: A general framework for fuzzy morphological associative memories. Fuzzy Sets and Systems 159(7), 747–768 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Willmott, R.: On the transitivity of containment and equivalence in fuzzy power set theory. Journal of Mathematical Analysis and Applications 120(1), 384–396 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ynoguti, C., Violaro, F.: A Brazilian Portuguese speech database. In: Anais do XXVI Simpósio Brasileiro de Telecomunicações (SBrT 2008). Rio de Janeiro, Brasil (September 2008)

    Google Scholar 

  37. Young, V.R.: Fuzzy subsethood. Fuzzy Sets and Systems 77(3), 371–384 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeng, W., Li, H.: Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations. International Journal of Intelligent Systems 21(6), 639–653 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esmi, E., Sussner, P., Valle, M.E., Sakuray, F., Barros, L. (2012). Fuzzy Associative Memories Based on Subsethood and Similarity Measures with Applications to Speaker Identification. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics