Anomaly Detection in Water Management Systems | SpringerLink
Skip to main content

Anomaly Detection in Water Management Systems

  • Chapter
Critical Infrastructure Protection

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7130))

Abstract

Quality of drinking water has always been a matter of concern. Traditionally, water supplied by utilities is analysed by independent laboratories to guarantee its quality and suitability for the human consumption. Being part of a critical infrastructure, recently water quality has received attention from the security point of view. Real-time monitoring of water quality requires analysis of sensor data gathered at distributed locations and generation of alarms when changes in quality indicators indicate anomalies. The event detection system should produce accurate alarms, with low latency and few false positives.

This chapter addresses the application of data mining techniques developed for information infrastructure security in a new setting. The hypothesis is that a clustering algorithm ADWICE that has earlier been successfully applied to n-dimensional data spaces in IP networks, can also be deployed for real-time anomaly detection in water management systems. The chapter describes the evaluation of the anomaly detection software when integrated in a SCADA system. The system manages water sensors and provides data for analysis within the Water Security initiative of the U.S. Environmental Protection Agency (EPA). Performance of the algorithm is illustrated and improvements to the collected data to deal with missing and inaccurate data are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.independent.co.uk/news/world/europe/contamination-fears-after-leak-from-french-nuclear-waste-plant-863928.html (accessed April 26, 2010)

  2. http://cfpub.epa.gov/safewater/watersecurity/initiative.cfm (accessed April 26, 2010)

  3. http://www.epa.gov/nrmrl/wswrd/dw/epanet.html (accessed November 19, 2010)

  4. Allgeier, S.C., Umberg, K.: Systematic evaluation of contaminant detection through water quality monitoring. In: Water Security Congress Proceedings. American Water Works Association (2008)

    Google Scholar 

  5. ASCE: Interim voluntary guidelines for designing an online contaminant monitoring system. American Society of Civil Engineers, Reston,VA (2004)

    Google Scholar 

  6. Berry, J.W., Fleischer, L., Hart, W.E., Phillips, C.A., Watson, J.P.: Sensor placement in municipal water networks. Journal of Water Resources Planning and Management 131(3), 237–243 (2005)

    Article  Google Scholar 

  7. Burbeck, K., Nadjm-Tehrani, S.: ADWICE – Anomaly Detection with Real-Time Incremental Clustering. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 407–424. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Burbeck, K., Nadjm-Tehrani, S.: Adaptive real-time anomaly detection with incremental clustering. Information Security Technical Report - Elsevier 12(1), 56–67 (2007)

    Article  Google Scholar 

  9. Byer, D., Carlson, K.: Real-time detection of intentional chemical contamination in the distribution system. Journal American Water Works Association 97(7) (2005)

    Google Scholar 

  10. Cárdenas, A.A., Amin, S., Sastry, S.: Research challenges for the security of control systems. In: Proceedings of the 3rd Conference on Hot Topics in Security, pp. 6:1–6:6. USENIX Association, Berkeley (2008)

    Google Scholar 

  11. Doglioni, A., Primativo, F., Giustolisi, O., Carbonara, A.: Scenarios of contaminant diffusion on a medium size urban water distribution network, p. 84. ASCE (2008)

    Google Scholar 

  12. Eliades, D., Polycarpou, M.: Security of Water Infrastructure Systems. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 360–367. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Eliades, D., Polycarpou, M.: A fault diagnosis and security framework for water systems. IEEE Transactions on Control Systems Technology 18(6), 1254–1265 (2010)

    Google Scholar 

  14. Friedlander, S., Serre, D. (eds.): Handbook of mathematical fluid dynamics, vol. 1. Elsevier B.V (2002)

    Google Scholar 

  15. Goetz, E., Shenoi, S. (eds.): Critical Infrastructure Protection. Springer, Heidelberg (2008)

    Google Scholar 

  16. Guan, J., Aral, M.M., Maslia, M.L., Grayman, W.M.: Identification of contaminant sources in water distribution systems using simulation–optimization method: Case study. Journal of Water Resources Planning and Management 132(4), 252–262 (2006)

    Article  Google Scholar 

  17. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  18. Hart, D., McKenna, S.A., Klise, K., Cruz, V., Wilson, M.: Canary: A water quality event detection algorithm development tool, pp. 517–517. ASCE (2007)

    Google Scholar 

  19. Huang, J.J., McBean, E.A.: Data mining to identify contaminant event locations in water distribution systems. Journal of Water Resources Planning and Management 135(6), 466–474 (2009)

    Article  Google Scholar 

  20. Kessler, A., Ostfeld, A., Sinai, G.: Detecting accidental contaminations in municipal water networks. Journal of Water Resources Planning and Management 124(4), 192–198 (1998)

    Article  Google Scholar 

  21. Khanal, N., Speight, V.: Increasing application of water quality models, pp. 514–514. ASCE (2008)

    Google Scholar 

  22. Klise, K.A., McKenna, S.A.: Multivariate applications for detecting anomalous water quality, pp. 130–130. ASCE (2006)

    Google Scholar 

  23. Koch, M.W., McKenna, S.: Distributed sensor fusion in water quality event detection. To Appear in Journal of Water Resource Planning and Management 137(1) (2011)

    Google Scholar 

  24. Kruegel, C., Valeur, F., Vigna, G.: Intrusion Detection and Correlation Challenges and Solutions. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  25. Kurotani, K., Kubota, M., Akiyama, H., Morimoto, M.: Simulator for contamination diffusion in a water distribution network. In: Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 792–797 (1995)

    Google Scholar 

  26. Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G.: Mixed-integer approach for obtaining unique solutions in source inversion of water networks. Journal of Water Resources Planning and Management 132(4), 242–251 (2006)

    Article  Google Scholar 

  27. Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G., Bartlett, R.A.: Contamination source determination for water networks. Journal of Water Resources Planning and Management 131(2), 125–134 (2005)

    Article  Google Scholar 

  28. Lee, B.H., Deininger, R.A.: Optimal locations of monitoring stations in water distribution system. Journal of Environmental Engineering 118(1), 4–16 (1992)

    Article  Google Scholar 

  29. Luiijf, E., Ali, M., Zielstra, A.: Assessing and Improving SCADA Security in the Dutch Drinking Water Sector. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 190–199. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Murray, R., Uber, J., Janke, R.: Model for estimating acute health impacts from consumption of contaminated drinking water. J. Water Resource Planning and Management 132(4), 293–299 (2006)

    Article  Google Scholar 

  31. Ostfeld, A., Salomons, E.: Optimal layout of early warning detection stations for water distribution systems security. Journal of Water Resources Planning and Management 130(5), 377–385 (2004)

    Article  Google Scholar 

  32. Pietro, R.D., Mancini, L.V.: Intrusion Detection Systems. Springer, Heidelberg (2008)

    Google Scholar 

  33. Preis, A., Ostfeld, A.: Contamination source identification in water systems: A hybrid model trees–linear programming scheme. Journal of Water Resources Planning and Management 132(4), 263–273 (2006)

    Article  Google Scholar 

  34. Propato, M.: Contamination warning in water networks: General mixed-integer linear models for sensor location design. Journal of Water Resources Planning and Management 132(4), 225–233 (2006)

    Article  Google Scholar 

  35. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 305–316 (2010)

    Google Scholar 

  36. Walski, T.M., Chase, D.V., Savic, D.A., Grayman, W., Beckwith, S., Koelle, E. (eds.): Advanced water distribution modeling and management. Haestead Press (2004)

    Google Scholar 

  37. Zechman, E.M., Ranjithan, S.R.: Evolutionary computation-based methods for characterizing contaminant sources in a water distribution system. Journal of Water Resources Planning and Management 135(5), 334–343 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raciti, M., Cucurull, J., Nadjm-Tehrani, S. (2012). Anomaly Detection in Water Management Systems. In: Lopez, J., Setola, R., Wolthusen, S.D. (eds) Critical Infrastructure Protection. Lecture Notes in Computer Science, vol 7130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28920-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28920-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28919-4

  • Online ISBN: 978-3-642-28920-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics