Abstract
Manual construction of ontologies by domain experts and knowledge engineers is a costly task. Thus, automatic and/or semi-automatic approaches to their development are needed. Ontology Learning aims at identifying its constituent elements, such as non-taxonomic relationships, from textual information sources. This article presents a discussion of the problem of Learning Non-Taxonomic Relationships of Ontologies and defines its generic process. Three techniques representing the state of the art of Learning Non-Taxonomic Relationships of Ontologies are described and the solutions they provide are discussed along with their advantages and limitations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, J.: Natural Language Understanding. The Benjamin/Cummings Publishing Company, Inc., Redwood City (1995)
Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: An Overview. DFKI, Language Technology Lab. AIFB, University of Karlsruhe. ITC-irst (2003)
Buitelaar, P., Cimiano, P., Magnini, P.: Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2006)
Dale, R., Moisl, H., Somers, H.L.: Handbook of natural language processing. CRC (2000)
Dellschaft, K., Staab, S.: On How to Perform a Gold Standard Based Evaluation of Ontology Learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Freitag, D.: Information extraction from HTML: Application of a general machine learning approach. In: Proceedings of the 15th Conference on Artificial Intelligence, pp. 517–523 (1998)
Maedche, A., Staab, S.: Mining Ontologies from Text. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 189–202. Springer, Heidelberg (2000)
Mitchell, T.: Machine Learning. McGraw Hill (1997)
Rinaldi, F., et al.: Mining relations in the GENIA corpus. In: Proceedings of the Second European Workshop on Data Mining and Text Mining for Bioinformatics (2004)
Sanchez, D., Moreno, A.: Learning non-taxonomic relationships from web documents for domain ontology construction. Data and Knowledge Engineering 64(3), 600–623 (2008)
Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proc. of VLDB 1995, pp. 407–419 (1995)
Villaverde, J., Persson, A., Godoy, D., Amandi, A.: Supporting the discovery and labeling of non-taxonomic relationships in ontology learning. Expert Syst. Appl. 36(7), 10288–10294 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Serra, I., Girardi, R., Novais, P. (2012). The Problem of Learning Non-taxonomic Relationships of Ontologies from Text. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-28765-7_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28764-0
Online ISBN: 978-3-642-28765-7
eBook Packages: EngineeringEngineering (R0)