The Problem of Learning Non-taxonomic Relationships of Ontologies from Text | SpringerLink
Skip to main content

The Problem of Learning Non-taxonomic Relationships of Ontologies from Text

  • Conference paper
Distributed Computing and Artificial Intelligence

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 151))

  • 1991 Accesses

Abstract

Manual construction of ontologies by domain experts and knowledge engineers is a costly task. Thus, automatic and/or semi-automatic approaches to their development are needed. Ontology Learning aims at identifying its constituent elements, such as non-taxonomic relationships, from textual information sources. This article presents a discussion of the problem of Learning Non-Taxonomic Relationships of Ontologies and defines its generic process. Three techniques representing the state of the art of Learning Non-Taxonomic Relationships of Ontologies are described and the solutions they provide are discussed along with their advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 57199
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 71499
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.: Natural Language Understanding. The Benjamin/Cummings Publishing Company, Inc., Redwood City (1995)

    MATH  Google Scholar 

  2. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: An Overview. DFKI, Language Technology Lab. AIFB, University of Karlsruhe. ITC-irst (2003)

    Google Scholar 

  3. Buitelaar, P., Cimiano, P., Magnini, P.: Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2006)

    Google Scholar 

  4. Dale, R., Moisl, H., Somers, H.L.: Handbook of natural language processing. CRC (2000)

    Google Scholar 

  5. Dellschaft, K., Staab, S.: On How to Perform a Gold Standard Based Evaluation of Ontology Learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Freitag, D.: Information extraction from HTML: Application of a general machine learning approach. In: Proceedings of the 15th Conference on Artificial Intelligence, pp. 517–523 (1998)

    Google Scholar 

  8. Maedche, A., Staab, S.: Mining Ontologies from Text. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 189–202. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Mitchell, T.: Machine Learning. McGraw Hill (1997)

    Google Scholar 

  10. Rinaldi, F., et al.: Mining relations in the GENIA corpus. In: Proceedings of the Second European Workshop on Data Mining and Text Mining for Bioinformatics (2004)

    Google Scholar 

  11. Sanchez, D., Moreno, A.: Learning non-taxonomic relationships from web documents for domain ontology construction. Data and Knowledge Engineering 64(3), 600–623 (2008)

    Article  Google Scholar 

  12. Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proc. of VLDB 1995, pp. 407–419 (1995)

    Google Scholar 

  13. Villaverde, J., Persson, A., Godoy, D., Amandi, A.: Supporting the discovery and labeling of non-taxonomic relationships in ontology learning. Expert Syst. Appl. 36(7), 10288–10294 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serra, I., Girardi, R., Novais, P. (2012). The Problem of Learning Non-taxonomic Relationships of Ontologies from Text. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28765-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28764-0

  • Online ISBN: 978-3-642-28765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics