Liver Segmental Anatomy and Analysis from Vessel and Tumor Segmentation via Optimized Graph Cuts | SpringerLink
Skip to main content

Liver Segmental Anatomy and Analysis from Vessel and Tumor Segmentation via Optimized Graph Cuts

  • Conference paper
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2011)

Abstract

The segmentation and classification of the major intra-hepatic blood vessels along with the segmentation and analysis of hepatic tumors are critical for patient specific models of the diseased liver. Additionally, the accurate identification of liver anatomical segments can assist in the clinical assessment of the risks and benefits of hepatic interventions. We propose a novel 4D graph-based method to segment hepatic vasculature and tumors. The algorithm uses multi-phase CT images to model the differential enhancement of the liver structures and Hessian-based shape likelihoods to avoid the common pitfalls of graph cuts with undersegmentation and intensity heterogeneity. A hybrid classification step based on post-order walks of a graph identifies the right, middle and left hepatic, and portal veins. Veins are tracked using the graph representation and planes fitted to the vessel segments. The method allows the detection of all hepatic tumors and identification of the liver segments with 87.8% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Foley, W.: Liver: Surgical Planning. European Rad Supplements 15(4), d89–d95 (2005)

    Article  Google Scholar 

  2. Huang, S., et al.: The Use of a Projection Method to Simplify Portal and Hepatic Vein Segmentation in Liver Anatomy. Comp. Meth. Programs Biomed. 92(3), 274–278 (2008)

    Article  Google Scholar 

  3. Couinaud, C.: Liver Anatomy: Portal (and Suprahepatic) or Biliary Segmentation. Digestive Surgery 16(6), 459–467 (2000)

    Article  Google Scholar 

  4. Selle, D., et al.: Analysis of Vasculature for Liver Surgical Planning. IEEE Trans. Med. Imaging 21(11), 1344–1357 (2002)

    Article  Google Scholar 

  5. Beichel, R., et al.: Liver Segment Approximation in CT Data for Surgical Resection Planning. In: SPIE Med. Imaging (2004)

    Google Scholar 

  6. Soler, L., et al.: Fully Automatic Anatomical, Pathological, and Functional Segmentation from CT Scans for Hepatic Surgery. Computer Aided Surgery 6(3), 131–142 (2001)

    Article  MathSciNet  Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans. PAMI 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  8. Kolmogorov, V., Boykov, Y.: What Metrics Can Be Approximated by Geo-Cuts, or Global Optimization of Length/Area and Flux. In: IEEE Int. Conf. Comp. Vis., pp. 564–571 (2005)

    Google Scholar 

  9. Esneault, S., Lafon, C., Dillenseger, J.L.: Liver Vessels Segmentation Using a Hybrid Geometrical Moments/Graph Cuts Method. IEEE Trans. Biomed. Eng. 57(2), 276–283 (2009)

    Article  Google Scholar 

  10. Kaftan, J.N., Tek, H., Aach, T.: A Two-Stage Approach for Fully Automatic Segmentation of Venous Vascular Structures in Liver CT Images. In: SPIE Med. Imaging (2009)

    Google Scholar 

  11. Linguraru, M.G., Pura, J.A., Chowdhury, A.S., Summers, R.M.: Multi-Organ Segmentation from Multi-Phase Abdominal CT via 4D Graphs Using Enhancement, Shape and Location Optimization. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 89–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Thirion, J.: Image Matching as a Diffusion Process: An Analogy with Maxwell’s Demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  13. Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. PAMI 12(7), 629–639 (1990)

    Article  Google Scholar 

  14. Sato, Y., et al.: 3D Multi-Scale Line Filter for Segmentation and Visualization of Curvilinear Structures in Medical Images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Lee, T., Kashyap, R., Chu, C.: Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms. Graphical Models and Image Processing 56(6), 462–478 (1994)

    Article  Google Scholar 

  16. Pamulapati, V., Wood, B.J., Linguraru, M.G.: Intra-Hepatic Vessel Segmentation and Classification in Multi-Phase CT Using Optimized Graph Cuts. In: ISBI, pp. 1982–1985 (2011)

    Google Scholar 

  17. Deng, X., Du, G.: Editorial: 3D Segmentation in the Clinic: A Grand Challenge II - Liver Tumor Segmentation. In: MICCAI Workshop (2008)

    Google Scholar 

  18. http://www.mevismedical.com/

  19. http://www.liversuite.com/

  20. http://www.ircad.fr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pamulapati, V., Venkatesan, A., Wood, B.J., Linguraru, M.G. (2012). Liver Segmental Anatomy and Analysis from Vessel and Tumor Segmentation via Optimized Graph Cuts. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2011. Lecture Notes in Computer Science, vol 7029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28557-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28557-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28556-1

  • Online ISBN: 978-3-642-28557-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics