Abstract
Order-preserving encryption (OPE) is a deterministic encryption scheme whose encryption function preserves numerical ordering of the plaintexts. While the concept of OPE was introduced in 2004, the first provably-secure OPE scheme was constructed by Boldyreva, Chenette, Lee, and O’Neill at Eurocrypt 2009. The BCLO scheme uses a sampling algorithm for the hypergeometric distribution as a subroutine and maps the Euclidean middle range gap to a domain gap. We study how to utilize the (non-uniform) distribution of the plaintext-space to reduce the number of sampling algorithm invocations in the BCLO scheme. Instead of the Euclidean middle range gap, we map the probabilistic middle range gap to a domain gap. Our simulation shows that the proposed method is effective for various distributions and especially for distributions with small variance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for numeric data. In: SIGMOD Conference, pp. 563–574. ACM (2004)
Westhoff, D., Girão, J., Acharya, M.: Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation. IEEE Trans. Mob. Comput. 5(10), 1417–1431 (2006)
Erkin, Z., Piva, A., Katzenbeisser, S., Lagendijk, R.L., Shokrollahi, J., Neven, G., Barni, M.: Protection and retrieval of encrypted multimedia content: When cryptography meets signal processing. EURASIP Journal on Information Security (2007); Article ID 78943
Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption Standard. Springer, Heidelberg (2002)
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (1996)
Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-Preserving Symmetric Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009)
Kirby, G.: Zipf’s law. UK Journal of Naval Science 10(3), 180–185 (1985)
Zipf, G.K.: Selected studies of the principle of relative frequency in language. Harvard University Press (1932)
Kachitvichyanukul, V., Schmeiser, B.W.: Computer generation of hypergeometric random variates. Journal of Statistical Computation and Simulation 22(2), 127–145 (1985)
Kachitvichyanukul, V., Schmeiser, B.W.: Algorithm 668: H2PEC: sampling from the hypergeometric distribution. ACM Trans. Math. Softw. 14(4), 397–398 (1988)
Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K.E.: Probability and Statistics for Engineers and Scientists. Prentice-Hall (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yum, D.H., Kim, D.S., Kim, J.S., Lee, P.J., Hong, S.J. (2012). Order-Preserving Encryption for Non-uniformly Distributed Plaintexts. In: Jung, S., Yung, M. (eds) Information Security Applications. WISA 2011. Lecture Notes in Computer Science, vol 7115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27890-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-27890-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27889-1
Online ISBN: 978-3-642-27890-7
eBook Packages: Computer ScienceComputer Science (R0)