Abstract
Hartmanis-Stearns conjecture asserts that any number whose decimal expansion can be computed by a multitape Turing machine is either rational or transcendental. After half a century of active research by computer scientists and mathematicians the problem is still open but much more interesting than in 1965.
The research was supported by Agreement with the European Regional Development Fund (ERDF) 2010/0206/2DP/2.1.1.2.0/10/APIA/VIAA/011.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)
Adamczewski, B., Allouche, J.-P.: Reversals and palindromes in continued fractions. Theoretical Computer Science 380(3), 220–237 (2007)
Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers I. Expansions in integer bases. Annals of Mathematics 165, 547–565 (2007)
Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers II. Continued fractions. Acta Mathematica 195(1), 1–20 (2005)
Adamczewski, B., Bugeaud, Y.: On the independence of expansions of algebraic numbers in an integer base. Bulletin London Mathematical Society 39(2), 283–289 (2007)
Adamczewski, B., Bugeaud, Y.: Mesures de transcendance et aspects quantitatifs de la mthode de Thue-Siegel-Roth-Schmidt. Proceedings of the London Mathematical Society 101(1), 1–26 (2010)
Adamczewski, B., Bugeaud, Y., Luca, F.: Sur la complexité des nombres algébriques. Comptes Rendus de l’Académie des Sciences, Paris Ser. I 336, 11–14 (2004)
Agafonov, V.N.: Normal sequences and finite automata. Soviet Mathematics Doklady 9, 324–325 (1968)
Allouche, J.-P.: Nouveaux résultats de transcendance de r\(\acute{e}\)els \(\grave{a}\) d\(\acute{e}\)veloppement non aléatoire. Gazette des Mathématiciens (84), 19–34 (2000)
Allouche, J.-P., Zamboni, L.Q.: Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. Journal of Number Theory 69, 119–124 (1998)
Ambainis, A., Apsītis, K., Calude, C., Freivalds, R., Karpinski, M., Larfeldt, T., Sala, I., Smotrovs, J.: Effects of Kolmogorov Complexity Present in Inductive Inference as Well. In: Li, M. (ed.) ALT 1997. LNCS, vol. 1316, pp. 244–259. Springer, Heidelberg (1997)
Baker, A.: Linear forms in the logarithms of algebraic numbers I–III. Mathematika. A Journal of Pure and Applied Mathematics 13, 204–216 (1966); 14, 102–107 (1967); 14, 220–228 (1967)
van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Stevin 28, 203–217 (1951)
Becher, V., Figueira, S.: An example of a computable absolutely normal number. Theoretical Computer Science 270(1-2), 947–958 (2002)
Borel, É.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)
Borel, É.: Sur les chiffres décimaux de \(\sqrt{2}\) et divers problèmes en châine. Comptes Rendus de l’Académie des Sciences, Paris 230, 591–593 (1950)
Calude, C.: What is a random string? Journal of Universal Computer Science 1(1), 48–66 (1995)
Calude, C.: Borel normality and algorithmic randomness. In: Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory: At the Crossroads of Mathematics, Computer Science and Biology, pp. 113–119. World Scientific, Singapore (1994)
Calude, C.S., Zamfirescu, T.: Most numbers obey no probability laws. Publicationes Mathematicae Debrecen 54(Supplement), 619–623 (1999)
Champernowne, D.G.: The construction of decimals normal in the scale of ten. The Journal of the London Mathematical Society 8, 254–260 (1933)
Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Mathematical Systems Theory 3, 186–192 (1969)
Cobham, A.: Uniform tag sequences. Mathematical Systems Theory 6, 164–192 (1972)
Copeland, A.H., Erdös, P.: Note on normal numbers. Bulletin of the American Mathematical Society 52, 857–860 (1946)
Eilenberg, S.: Automata, Languages and Machines, vol. A, B. Academic Press, New York (1974)
Ferenczi, S., Mauduit, C.: Transcendence of numbers with a low complexity expansion. Journal of Number Theory 67(2), 146–161 (1997)
Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. Theoretical Computer Science 411(38-39), 3436–3443 (2010)
Freivalds, R., Kinber, E.B., Wiehagen, R.: How inductive inference strategies discover their errors. Information and Computation 118(2), 208–226 (1995)
Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)
Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)
Hurwitz, A.: Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Mathematische Annalen 39(2), 279–284 (1891)
Kaneps, J., Freivalds, R.: Minimal Nontrivial Space Complexity of Probabilistic One-Way Turing Machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361. Springer, Heidelberg (1990)
Khinchin, A.Y.: Continued Fractions. Dover Publications (2007) (translation from Russian original, GITTL, 1949)
Kolmogorov, A.N., Uspensky, V.A.: Algorithms and randomness. Theory of Probability and Its Applications 32, 389–412 (1987)
Liouville, J.: Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques. Journal de Mathématiques Pures et Appliquées 16(1), 133–142 (1851)
Loxton, J.H., van der Poorten, A.J.: Transcendence and algebraic independence by a method of Mahler. In: Baker, A., Masser, D.W. (eds.) Transcendence Theory: Advances and Applications. ch. 15, pp. 211–226. Academic Press, London (1977)
Roth, K.F.: Rational approximations to algebraic numbers. Mathematika. A Journal of Pure and Applied Mathematics 2, 1–20, 168 (1955)
Schlickewei, H.P.: The 2-adic Thue-Siegel-Roth-Schmidt theorem. Archiv der Mathematik 29(1), 267–270 (1977)
Schmidt, W.: The subspace theorem in diophantine approximation. Compositio Mathematica, Tome 69(2), 121–173 (1989)
Sierpiński, W.: Démonstration élémentaire d’un théorème de M. Borel sur les nombres absolument normaux et détermination effective d’un tel nombre. Bulletin de la Société Mathématique de France 45, 125–144 (1917)
Shallit, J., Breitbart, Y.: Automaticity I: Properties of a measure of descriptional complexity. Journal of Computer and Systems Science 53(1), 10–25 (1996)
Weisstein, E.W.: Transcendental number. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/TranscendentalNumber.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Freivalds, R. (2012). Hartmanis-Stearns Conjecture on Real Time and Transcendence. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-27654-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27653-8
Online ISBN: 978-3-642-27654-5
eBook Packages: Computer ScienceComputer Science (R0)