Abstract
The present paper generalises results by Tadaki [12] and Calude et al. [1] on oscillation-free partially random infinite strings. Moreover, it shows that oscillation-free partial Chaitin randomness can be separated from oscillation-free partial strong Martin-Löf randomness by \(\Pi_{1}^{0}\)-definable sets of infinite strings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Calude, C.S., Hay, N.J., Stephan, F.: Representation of left-computable ε-random reals. J. Comput. System Sci. 77(4), 812–819 (2011), http://dx.doi.org/10.1016/j.jcss.2010.08.001
Calude, C.S., Staiger, L., Terwijn, S.A.: On partial randomness. Ann. Pure Appl. Logic 138(1-3), 20–30 (2006), http://dx.doi.org/10.1016/j.apal.2005.06.004
Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010)
Graf, S., Mauldin, R.D., Williams, S.C.: The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 71(381), x+121 (1988)
Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79(1-2), 157–179 (1918), http://dx.doi.org/10.1007/BF01457179
Mielke, J.: Verfeinerung der Hausdorff-Dimension und Komplexität von ω-Sprachen. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg (2010), http://nbn-resolving.de/urn:nbn:de:gbv:3:4-2816 (in German)
Mielke, J., Staiger, L.: On oscillation-free ε-random sequences II. In: Bauer, A., Hertling, P., Ko, K.I. (eds.) Computability and Complexity in Analysis. Dagstuhl Seminar Proceedings, vol. 09003, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009), http://drops.dagstuhl.de/opus/volltexte/2009/2269
Reimann, J., Stephan, F.: Hierarchies of randomness tests. In: Goncharov, S.S., Downey, R., Ono, H. (eds.) Mathematical logic in Asia, pp. 215–232. World Scientific, Hackensack (2006)
Staiger, L.: On oscillation-free ε-random sequences. Electr. Notes Theor. Comput. Sci. 221, 287–297 (2008)
Staiger, L.: Constructive Dimension and Hausdorff Dimension: The Case of Exact Dimension. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 252–263. Springer, Heidelberg (2011)
Tadaki, K.: A generalization of Chaitin’s halting probability Ω and halting self-similar sets. Hokkaido Math. J. 31(1), 219–253 (2002)
Tadaki, K.: A New Representation of Chaitin Ω Number Based on Compressible Strings. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS, vol. 6079, pp. 127–139. Springer, Heidelberg (2010)
Uspensky, V.A., Shen, A.: Relations between varieties of Kolmogorov complexities. Math. Systems Theory 29(3), 271–292 (1996), http://dx.doi.org/10.1007/BF01201280
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Staiger, L. (2012). On Oscillation-Free Chaitin h-Random Sequences. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-27654-5_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27653-8
Online ISBN: 978-3-642-27654-5
eBook Packages: Computer ScienceComputer Science (R0)