Abstract
In the domain of modern public key cryptography, RSA is the most popular system in use. Efficient factorization of the RSA modulus N, constituted as a product of two primes p, q of ‘large’ bitsize, is a challenging problem in RSA cryptanalysis. The solution to this factorization is aided if the attacker gains partial knowledge about the decryption exponent of RSA. This line of attack is called the Partial Key Exposure attack, and there exists an extensive literature in this direction.
In this paper, we study partial key exposure attacks on RSA where the number of unexposed blocks in the decryption exponent is more than one. The existing works have considered only one unexposed block and thus our work provides a generalization of the existing attacks. We propose lattice based approaches to factorize the RSA modulus N = pq (for large primes p, q) when the number of unexposed blocks is n ≥ 1. We also analyze the ISO/IEC 9796-2 standard signature scheme (based on CRT-RSA) with partially known messages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)
Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 25–34. Springer, Heidelberg (1998)
Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N 0. 292. IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. Journal of Cryptology 14(2), 101–119 (2001)
Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault Attacks on RSA Signatures with Partially Unknown Messages. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009)
Coron, J.-S., Naccache, D., Tibouchi, M.: Fault Attacks Against emv Signatures. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer, Heidelberg (2010)
Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)
Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factoring Given Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 406–424. Springer, Heidelberg (2008)
Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer, Heidelberg (2009)
Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)
ISO/IEC 9796-2, Information technology - Security techniques - Digital signature scheme giving message recovery, Part 2: Mechanisms using a hash-function (1997)
Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)
Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 513–534 (1982)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Communications of ACM 21(2), 158–164 (1978)
Sarkar, S., Maitra, S.: Cryptanalysis of RSA with more than one Decryption Exponent. Information Processing Letters 110(8-9), 336–340 (2010)
Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory 36(3), 553–558 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sarkar, S. (2011). Partial Key Exposure: Generalized Framework to Attack RSA. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-25578-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25577-9
Online ISBN: 978-3-642-25578-6
eBook Packages: Computer ScienceComputer Science (R0)