Abstract
In this paper, we present a distinguisher for the permutation of SIMD-512 with complexity 2226.52. We extend the attack to a distinguisher for the compression function with complexity 2200.6. The attack is based on the application of the boomerang attack for hash functions. Starting from the middle of the compression function we use techniques from coding theory to search for two differential characteristics, one for the backward direction and one for the forward direction to construct a second-order differential. Both characteristics hold with high probability. The direct application of the second-order differential leads to a distinguisher for the permutation. Based on this differential we extend the attack to distinguisher for the compression function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)
Biryukov, A., Lamberger, M., Mendel, F., Nikolic, I.: Second-Order Differential Collisions for Reduced SHA-256. In: ASIACRYPT (to appear, 2011)
Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)
Bouillaguet, C., Fouque, P.-A., Leurent, G.: Security Analysis of SIMD. Cryptology ePrint Archive, Report 2010/323 (2010)
Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)
Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)
Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010)
Nikolić, P.S.I., Pieprzyk, J., Steinfeld, R.: Rotational Cryptanalysis of (Modified) Versions of BMW and SIMD (2010) Available online
Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidelberg (2007)
Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)
Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R., Costello Jr., D., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography, pp. 227–233. Kluwer (1992)
Lamberger, M., Mendel, F.: Higher-Order Differential Attack on Reduced SHA-256. Cryptology ePrint Archive, Report 2011/037 (2011)
Leurent, G., Bouillaguet, C., Fouque, P.-A.: SIMD Is a Message Digest. Submission to NIST (Round 2) (September 2009), http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)
Mendel, F., Nad, T.: A Distinguisher for the Compression Function of SIMD-512. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 219–232. Springer, Heidelberg (2009)
Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)
Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)
Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)
Murphy, S.: The return of the cryptographic boomerang. IEEE Transactions on Information Theory 57(4), 2517–2521 (2011)
Nad, T.: The CodingTool Library. Workshop on Tools for Cryptanalysis 2010 (2010), http://www.iaik.tugraz.at/content/research/krypto/codingtool/
National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition (November 2007), http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)
Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryptology ePrint Archive, Report 2007/413 (2007)
Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
Yu, H., Wang, X.: Cryptanalysis of the Compression Function of SIMD. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 157–171. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mendel, F., Nad, T. (2011). Boomerang Distinguisher for the SIMD-512 Compression Function. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-25578-6_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25577-9
Online ISBN: 978-3-642-25578-6
eBook Packages: Computer ScienceComputer Science (R0)