Abstract
In this paper a parallel-populations genetic algorithm procedure is presented for the obtainment of minimum-time trajectories for industrial robots. This algorithm is fed in first place by a sequence of configurations then cubic spline functions are used for the construction of joint trajectories for industrial robots. The algorithm is subjected to two types of constraints: (1) Physical constraints on joint velocities, accelerations, and jerk. (2) Dynamic constraints on torque, power, and energy. Comparison examples are used to evaluate the method with different combinations of crossover and mutation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Saramago, S.F.P., Steffen Jr., V.: Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system. Mechanism and Machine Theory 33(7), 883–894 (1998)
Saramago, S.F.P., Steffen Jr., V.: Dynamic optimization for the trajectory planning of robot manipulators in the presence of obstacles. J. Brazilian Soc. Mech. Sci. 21(3), 1–17 (1999)
Saramago, S.F.P., Steffen Jr., V.: Optimal trajectory planning of robot manipulators in the presence of moving obstacles. Mechanism and Machine Theory 35(8), 1079–1094 (2000)
Saramago, S.F.P., Steffen Jr., V.: Trajectory modeling of robot manipulators in the presence of obstacles. J. Optim. Theory Appl. 110(1), 17–34 (2001)
Saramago, S.F.P., Ceccareli, M.: An optimum robot path planning with payload constraints. Robotica 20, 395–404 (2002)
Luh, J.Y.S., Lin, C.-S.: Optimal path planning for mechanical manipulators. ASME J. DYN. Syst. Meas. Contr. 102, 142–151 (1981)
Lin, C.-S., Chang, P.R., Luh, J.Y.S.: Formulation and optimization of cubic polynomial joint trajectories for industrial manipulators. IEEE Trans. Automat. Contr. AC-28(12), 1066–1074 (1983)
Thompson, M., Patel, R.: Formulation of joint trajectories for industrial robots using B-splines. IEEE Trans. Indus. Electr. 34, 192–199 (1987)
Gasparetto, A., Zanotto, V.: A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory 42, 455–471 (2007)
Wang, C.H., Horng, J.G.: Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-Spline functions. IEEE Trans. Automat. Contr. 35(35), 573–577 (1990)
Jamhour, E., André, P.J.: Planning smooth trajectories along parametric paths. Mathematics and Computers in Simulation 41, 615–626 (1996)
Tse, K.-M., Wang, C.-H.: Evolutionary Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. In: IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, vol. 4, pp. 3272–3276 (1998)
Rubio, F.J., Valero, F.J., Suñer, J.L., Mata, V.: Simultaneous algorithm to solve the trajectory planning problem. Mechanism and Machine Theory 44, 1910–1922 (2009)
Rubio, F.J., Valero, F.J., Suñer, J.L.: The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal 37(5), 441–451 (2010)
Chettibi, T., Lehtihet, H.E., Haddad, M., Hanchi, S.: Minimum cost trajectory planning for industrial robots. European Journal of Mechanics A/Solids 23, 703–715 (2004)
Aurelio, P.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Indus. Electr. 47(1), 140–149 (2000)
Elnagar, A., Hussein, A.: On optimal constrained trajectory planning in 3D environments. Robot. Auton. Syst. 33(44), 195–206 (2000)
Ata, A.A., Myo, R.T.: Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search. International Journal of Advanced Robotic Systems 2(3), 239–244 (2005)
Saravanan, R., Ramabalan, S.: Evolutionary Minimum Cost Trajectory Planning for Industrial Robots. International Journal of Advanced Robotic Systems 52, 45–77 (2008)
Saravanan, R., Ramabalan, S., Balamurugan, C., Subash, A.: Evolutionary Trajectory Planning for an Industrial Robot. International Journal of Automation and Computing 7(2), 190–198 (2010)
Abu-Dakka, F.: Trajectory Planning for Industrial Robot Using Genetic Algorithms. Doctorate Thesis, Departamento Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia. Valencia, Spain (2011)
Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components. MIT, Cambridge (1996), http://lancet.mit.edu/ga
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abu-Dakka, F.J., Assad, I.F., Valero, F., Mata, V. (2011). Parallel-Populations Genetic Algorithm for the Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-25486-4_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25485-7
Online ISBN: 978-3-642-25486-4
eBook Packages: Computer ScienceComputer Science (R0)