XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions | SpringerLink
Skip to main content

XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7071))

Included in the following conference series:

Abstract

We present the hash-based signature scheme XMSS. It is the first provably (forward) secure and practical signature scheme with minimal security requirements: a pseudorandom and a second preimage resistant (hash) function family. Its signature size is reduced to less than 25% compared to the best provably secure hash based signature scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, R.: Two remarks on public key cryptology. In: Manuscript. Relevant material presented by the author in an invited lecture at the 4th ACM Conference on Computer and Communications Security, CCS, pp. 1–4. Citeseer (1997)

    Google Scholar 

  2. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)

    Google Scholar 

  3. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The cascade construction and its concrete security. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, pp. 514–523. IEEE (1996)

    Google Scholar 

  4. Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Bellare, M., Yee, B.S.: Forward-Security in Private-Key Cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 103–118. Springer, Heidelberg (2002)

    Google Scholar 

  8. Bleichenbacher, D., Maurer, U.M.: Optimal Tree-based One-time Digital Signature Schemes. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 363–374. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the Security of the Winternitz One-Time Signature Scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle Signatures with Virtually Unlimited Signature Capacity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Buchmann, J., Dahmen, E., Schneider, M.: Merkle Tree Traversal Revisited. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based Digital Signature Schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 35–93. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Buchmann, J., García, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – An Improved Merkle Signature Scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital Signatures Out of Second-Preimage Resistant Hash Functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Dods, C., Smart, N.P., Stam, M.: Hash Based Digital Signature Schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. García, L.C.C: On the security and the efficiency of the Merkle signature scheme. Technical Report Report 2005/192, Cryptology ePrint Archive - Report 2005/192 (2005), http://eprint.iacr.org/2005/192/

  17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33(4), 792–807 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hevia, A., Micciancio, D.: The Provable Security of Graph-Based One-Time Signatures and Extensions to Algebraic Signature Schemes. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 379–396. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle Tree Representation and Traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In: CCS 2000: Proceedings of the 7th ACM Conference on Computer and Communications Security, pp. 108–115. ACM, New York (2000)

    Google Scholar 

  23. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14, 255–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

    Google Scholar 

  25. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  26. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC 1990: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM Press, New York (1990)

    Chapter  Google Scholar 

  28. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  29. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchmann, J., Dahmen, E., Hülsing, A. (2011). XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions. In: Yang, BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol 7071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25405-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25405-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25404-8

  • Online ISBN: 978-3-642-25405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics